Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
from streamlit_chat import message | |
import tempfile | |
#from langchain_community.documentloader.csv_loader import CSVLoader | |
from langchain_community.document_loaders.csv_loader import CSVLoader | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
#from langchain_community.embeddings import HuggingFaceBgeEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
#from langchain_community.llms import CTransformers | |
from langchain_community.llms.ctransformers import CTransformers | |
from langchain.chains.conversational_retrieval.base import ConversationalRetrievalChain | |
#from langchain.chains.conversational_retrieval.base import ConversationalRetreievalChain | |
DB_FAISS_PATH = 'vectorstore/db_faiss' | |
TEMP_DIR = 'temp' | |
if not os.path.exists(TEMP_DIR): | |
os.makedirs(TEMP_DIR) | |
def load_llm(): | |
# load model from hugging face repo | |
llm = CTransformers( | |
model = 'TheBloke/Llama-2-7B-Chat-GGML', | |
model_type = 'llama', | |
max_new_token = 512, | |
temperature = 0.5 | |
) | |
return llm | |
st.title("Chat with CSV using Llma 2") | |
st.markdown("<h1 style='text-align: center; color: blue;'>Chat with your PDF π </h1>", unsafe_allow_html=True) | |
st.markdown("<h3 style='text-align: center; color: grey;'>Built by <a href='https://github.com/DrKareemKAmal'>MindSparks β€οΈ </a></h3>", unsafe_allow_html=True) | |
uploaded_file = st.sidebar.file_uploader('Upload your data', type=['csv']) | |
if uploaded_file: | |
# with tempfile.NamedTemporaryFile(delete=False)as temp_file : | |
# temp_file.write(uploaded_file.getvalue()) | |
# tempfile_path = temp_file.name | |
file_path = os.path.join(TEMP_DIR, uploaded_file.name) | |
with open(file_path, "wb") as f: | |
f.write(uploaded_file.getvalue()) | |
st.write(f"Uploaded file: {uploaded_file.name}") | |
st.write("Processing CSV file...") | |
loader = CSVLoader(file_path = file_path, encoding = 'utf-8', | |
csv_args = {'delimiter': ','} ) | |
data = loader.load() | |
#st.json(data) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 500 , chunk_overlap = 20) | |
text_chunks = text_splitter.split_documents(data) | |
st.write (f"Total text chunks : {len(text_chunks)}") | |
embeddings = HuggingFaceEmbeddings( | |
model_name = 'sentence-transformers/all-MiniLM-L6-v2', | |
# model_kwargs = {'device': 'cpu'} | |
) | |
db = FAISS.from_documents(text_chunks, embeddings) | |
db.save_local (DB_FAISS_PATH) | |
llm = load_llm() | |
chain = ConversationalRetrievalChain.from_llm(llm= llm , retriever = db.as_retriever()) | |
def conversational_chat(query): | |
result = chain({"question": query , | |
"chat_history": st.session_state['history']}) | |
st.session_state['history'].append((query , result['answer'])) | |
return result['answer'] | |
if 'history' not in st.session_state : | |
st.session_state['history'] = [] | |
if 'generated' not in st.session_state : | |
st.session_state['generated'] = ['Hello, Ask me anything about ' + uploaded_file.name] | |
if 'past' not in st.session_state : | |
st.session_state['past'] = ['Hey !'] | |
# Container for the chat history | |
response_container = st.container() | |
container = st.container() | |
with container : | |
with st.form(key = 'my_form', | |
clear_on_submit=True): | |
user_input = st.text_input('Query:', placeholder= "Talk to youur CSV Data here ") | |
submit_button = st.form_submit_button(label = 'chat') | |
if submit_button and user_input : | |
output = conversational_chat(user_input) | |
st.session_state['past'].append(user_input) | |
st.session_state['generated'].append(output) | |
if st.session_state['generated'] : | |
with response_container: | |
for i in range(len(st.session_state['generated'])): | |
message(st.session_state['past'][i], is_user = True , key=str(i) + '_user', | |
avatar_style='big-smile') | |
message(st.session_state['generated'][i], key = str(i), avatar_style='thumb') | |