Spaces:
Runtime error
Runtime error
import json | |
import gradio as gr | |
import pandas as pd | |
from openai import OpenAI | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain_community.vectorstores import FAISS | |
MODEL = "gpt-4o" | |
API_KEY = "sk-proj-FV9lzQDevcA7M7yllkL7T3BlbkFJgjk8JBewp08UwSFJwaXD" | |
# BASE_URL = "https://youtu.be/" | |
client = OpenAI(api_key = API_KEY) | |
embeddings = OpenAIEmbeddings(model = "text-embedding-3-large", api_key = API_KEY) | |
yt_chunks = FAISS.load_local("vector-large", embeddings, allow_dangerous_deserialization = True) | |
df = pd.read_csv("data/ko-youtube-trans-U10k.csv") | |
def find_docs(message): | |
finding_docs = yt_chunks.similarity_search(message, k = 5) | |
indices = [doc.metadata['row'] for doc in finding_docs] | |
retrievers = [json.loads(df.loc[idx].to_json(force_ascii = False)) for idx in indices] | |
return retrievers | |
def predict(message, history): | |
openai_input = list() | |
retriever = find_docs(message) | |
system_prompt = """- You are an AI chat bot that recommends YouTube content to users as an assistant.\n- You were created and powered by 'bigster (λΉ μ€ν°)', an AI & bigdata expert company.\n- Recommend YouTube content to users based on what's in βretrieverβ.\n- If the user's question is not related to content recommendations, please display a message declining to answer.\n- You must recommend at least 3 YouTube content items to the user based on the information in the 'retriever'. Be sure to explicitly include 'url' & 'videoChannelName' & 'videoName' information in your response. Also, for each featured piece of content, summarize what's in the 'transcription' and present it to the user. Use the following Markdown format to create hyperlinks: '[videoName](url)'\n\n retriever:\n{retriever}""" | |
for human, assistant in history: | |
openai_input.append({"role": "user", "content": human}) | |
openai_input.append({"role": "assistant", "content": assistant}) | |
openai_input = [item for item in openai_input if item['role'] != "system"] | |
openai_input.append({"role": "system", "content": system_prompt.format(retriever = retriever)}) | |
openai_input.append({"role": "user", "content": message}) | |
response = client.chat.completions.create( | |
model = MODEL, | |
messages = openai_input, | |
temperature = 1.0, | |
stream = True | |
) | |
partial_message = "" | |
for chunk in response: | |
if chunk.choices[0].delta.content is not None: | |
partial_message = partial_message + chunk.choices[0].delta.content | |
yield partial_message | |
print(openai_input) | |
gr.ChatInterface( | |
predict, | |
title = "YOUTUBE REC", | |
theme = gr.themes.Soft(primary_hue = "purple"), | |
examples = [ | |
"λ€ μ΄λ¦μ λμΌ?", | |
"νμ΄μ¬ νλ‘κ·Έλλ° μΈμ΄λ₯Ό λ ννκΈ° μν μμμ μΆμ²ν΄μ€.", | |
"μΈκ°κ΄κ³μμ ν° μμ€κ°μ λλΌλ λλ₯Ό μν μμμ μΆμ²ν΄μ€.", | |
"κ°λ¨νκ³ μ΄λ³΄μλ μ΄ν΄νκΈ° μ¬μ΄ λ₯λ¬λ κ°μ μΆμ²ν΄μ€.", | |
"νλμ€ μμ¬μ λν΄ κ³΅λΆνκ³ μΆμ΄μ. νλμ€ μμ¬μ κ΄λ ¨λ λ€νλ©ν°λ¦¬, κ°μ μμμ μΆμ²ν΄μ£ΌμΈμ.", | |
"μμ¦ μμΈμ΄λ₯Ό μμ±νκ³ μμ΅λλ€. λ³΄λ€ ν¨κ³Όμ μΌλ‘ κΈμ μ¨λ΄λ €κ°λ λ°©λ²μ μ μν΄μ£Όλ μμμ μΆμ²ν΄μ£ΌμΈμ." | |
] | |
).launch(share = True, auth = ("user", "bigster123")) |