drlee1's picture
Update app.py
0d054d8 verified
raw
history blame
3.42 kB
import json
import gradio as gr
import pandas as pd
from openai import OpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
MODEL = "gpt-4o"
API_KEY = "sk-proj-FV9lzQDevcA7M7yllkL7T3BlbkFJgjk8JBewp08UwSFJwaXD"
# BASE_URL = "https://youtu.be/"
client = OpenAI(api_key = API_KEY)
embeddings = OpenAIEmbeddings(model = "text-embedding-3-large", api_key = API_KEY)
yt_chunks = FAISS.load_local("vector-large", embeddings, allow_dangerous_deserialization = True)
df = pd.read_csv("data/ko-youtube-trans-U10k.csv")
def find_docs(message):
finding_docs = yt_chunks.similarity_search(message, k = 5)
indices = [doc.metadata['row'] for doc in finding_docs]
retrievers = [json.loads(df.loc[idx].to_json(force_ascii = False)) for idx in indices]
return retrievers
def predict(message, history):
openai_input = list()
retriever = find_docs(message)
system_prompt = """- You are an AI chat bot that recommends YouTube content to users as an assistant.\n- You were created and powered by 'bigster (λΉ…μŠ€ν„°)', an AI & bigdata expert company.\n- Recommend YouTube content to users based on what's in β€œretriever”.\n- If the user's question is not related to content recommendations, please display a message declining to answer.\n- You must recommend at least 3 YouTube content items to the user based on the information in the 'retriever'. Be sure to explicitly include 'url' & 'videoChannelName' & 'videoName' information in your response. Also, for each featured piece of content, summarize what's in the 'transcription' and present it to the user. Use the following Markdown format to create hyperlinks: '[videoName](url)'\n\n retriever:\n{retriever}"""
for human, assistant in history:
openai_input.append({"role": "user", "content": human})
openai_input.append({"role": "assistant", "content": assistant})
openai_input = [item for item in openai_input if item['role'] != "system"]
openai_input.append({"role": "system", "content": system_prompt.format(retriever = retriever)})
openai_input.append({"role": "user", "content": message})
response = client.chat.completions.create(
model = MODEL,
messages = openai_input,
temperature = 1.0,
stream = True
)
partial_message = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
partial_message = partial_message + chunk.choices[0].delta.content
yield partial_message
print(openai_input)
gr.ChatInterface(
predict,
title = "YOUTUBE REC",
theme = gr.themes.Soft(primary_hue = "purple"),
examples = [
"λ„€ 이름은 뭐야?",
"파이썬 ν”„λ‘œκ·Έλž˜λ° μ–Έμ–΄λ₯Ό λ…ν•™ν•˜κΈ° μœ„ν•œ μ˜μƒμ„ μΆ”μ²œν•΄μ€˜.",
"μΈκ°„κ΄€κ³„μ—μ„œ 큰 상싀감을 λŠλΌλŠ” λ‚˜λ₯Ό μœ„ν•œ μ˜μƒμ„ μΆ”μ²œν•΄μ€˜.",
"κ°„λ‹¨ν•˜κ³  μ΄ˆλ³΄μžλ„ μ΄ν•΄ν•˜κΈ° μ‰¬μš΄ λ”₯λŸ¬λ‹ κ°•μ˜ μΆ”μ²œν•΄μ€˜.",
"ν”„λž‘μŠ€ 역사에 λŒ€ν•΄ κ³΅λΆ€ν•˜κ³  μ‹Άμ–΄μš”. ν”„λž‘μŠ€ 역사에 κ΄€λ ¨λœ λ‹€νλ©˜ν„°λ¦¬, κ°•μ˜ μ˜μƒμ„ μΆ”μ²œν•΄μ£Όμ„Έμš”.",
"μš”μ¦˜ 에세이λ₯Ό μž‘μ„±ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€. 보닀 효과적으둜 글을 μ¨λ‚΄λ €κ°€λŠ” 방법을 μ œμ‹œν•΄μ£ΌλŠ” μ˜μƒμ„ μΆ”μ²œν•΄μ£Όμ„Έμš”."
]
).launch(share = True, auth = ("user", "bigster123"))