Malaria / app.py
drmurataltun's picture
Upload 3 files
0756b13 verified
raw
history blame
849 Bytes
#!/usr/bin/env python
# coding: utf-8
#dosyayı py olarak kaydet ve komut satırını kullanarak streamlit run streamlit.py
import streamlit as st
from tensorflow.keras.models import load_model
from PIL import Image
import numpy as np
import cv2
model=load_model('Malaria_cnn.h5')
def process_image(img):
img=img.resize((30,30))
img=np.array(img)
img=img/255.0
img=np.expand_dims(img,axis=0)
return img
st.title('Malaria Parazit Tarama')
st.write('Resim sec ve model tahmin etsin')
file=st.file_uploader('Bir resim seç', type= ['jpg','jpeg','png'])
class_names=['Normal','Parazit']
if file is not None:
img=Image.open(file)
st.image(img,caption='yuklenen resim')
image=process_image(img)
prediction=model.predict(image)
predicted_class=np.argmax(prediction)
st.write(class_names[predicted_class])