Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
import streamlit as st
|
5 |
+
from tensorflow.keras.models import load_model
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
import cv2
|
9 |
+
|
10 |
+
model = load_model('Malaria_cnn.h5')
|
11 |
+
|
12 |
+
def process_image(img):
|
13 |
+
img = img.resize((30, 30))
|
14 |
+
img = np.array(img)
|
15 |
+
img = img / 255.0
|
16 |
+
img = np.expand_dims(img, axis=0)
|
17 |
+
return img
|
18 |
+
|
19 |
+
st.title('Malaria Parazit Tarama')
|
20 |
+
st.write('Resim seçin ve model tahmin etsin')
|
21 |
+
|
22 |
+
file = st.file_uploader('Bir resim seçin', type=['jpg', 'jpeg', 'png'])
|
23 |
+
class_names = ['Normal', 'Parazit']
|
24 |
+
|
25 |
+
if file is not None:
|
26 |
+
img = Image.open(file)
|
27 |
+
st.image(img, caption='Yüklenen resim')
|
28 |
+
image = process_image(img)
|
29 |
+
prediction = model.predict(image)
|
30 |
+
predicted_class = np.argmax(prediction)
|
31 |
+
st.write(class_names[predicted_class])
|