drmurataltun commited on
Commit
ba13ce3
·
verified ·
1 Parent(s): 44d4dae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py CHANGED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoImageProcessor, DetaForObjectDetection
3
+ from PIL import Image
4
+ import requests
5
+
6
+ st.title("Object Detection")
7
+
8
+ # Sidebar instructions
9
+ st.sidebar.header("Instructions")
10
+ st.sidebar.write("1. Enter an image URL in the text input below.")
11
+ st.sidebar.write("2. Click the 'Detect Objects' button to process the image.")
12
+
13
+ # Image URL input
14
+ image_url = st.text_input("Enter image URL:", "http://images.cocodataset.org/val2017/000000039769.jpg")
15
+
16
+ if st.button("Detect Objects"):
17
+ try:
18
+ # Load the image
19
+ image = Image.open(requests.get(image_url, stream=True).raw)
20
+
21
+ # Initialize the image processor and model
22
+ image_processor = AutoImageProcessor.from_pretrained("jozhang97/deta-swin-large")
23
+ model = DetaForObjectDetection.from_pretrained("jozhang97/deta-swin-large")
24
+
25
+ # Process the image
26
+ inputs = image_processor(images=image, return_tensors="pt")
27
+ outputs = model(**inputs)
28
+
29
+ # Convert outputs to Pascal VOC format
30
+ target_sizes = torch.tensor([image.size[::-1]])
31
+ results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[0]
32
+
33
+ # Display the image and detected objects
34
+ st.image(image, use_column_width=True)
35
+ for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
36
+ box = [round(i, 2) for i in box.tolist()]
37
+ st.write(f"Detected {model.config.id2label[label.item()]} with confidence {round(score.item(), 3)} at location {box}")
38
+ except:
39
+ st.write("Error: Unable to process the image. Please check the URL and try again.")