File size: 4,204 Bytes
5363aef
 
 
608e720
5363aef
 
 
608e720
 
5363aef
 
 
d310922
608e720
 
 
 
 
 
d310922
608e720
d310922
497769a
5f1e5e2
608e720
5394b7a
e65e878
608e720
 
e65e878
608e720
 
 
497769a
608e720
 
f7fa288
608e720
497769a
608e720
 
 
5363aef
5f1e5e2
5363aef
 
a14ca86
 
 
982a876
a14ca86
 
 
 
 
 
608e720
 
a14ca86
 
f7fa288
608e720
a14ca86
497769a
 
5363aef
 
 
 
 
7349a3a
5363aef
 
 
608e720
5363aef
8a074d6
bbdf328
a8c7832
497769a
 
5363aef
a14ca86
497769a
e16e8bc
 
 
 
9524b89
e16e8bc
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import gradio as gr
import os
import openai
from newspaper import Article
import json
import re
from transformers import GPT2Tokenizer
import requests


# define the text summarizer function
def text_prompt(request, page_url, contraseña, temp):
    try:
        headers = {'User-Agent': 'Chrome/83.0.4103.106'}
        response = requests.get(page_url, headers=headers)
        html = response.text

        page = Article('')
        page.set_html(html)
        page.parse()

    except Exception as e:
        return "", f"--- An error occurred while processing the URL: {e} ---", ""
    
    tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
    sentences = page.text.split('.')
    
    tokens = []
    page_text = ""
    
    for sentence in sentences:
        tokens.extend(tokenizer.tokenize(sentence))
        
        # Trim text to a maximum of 1800 tokens
        if len(tokens) > 1800:
            break
        page_text += sentence + ". "
        
    # Delete the last space
    page_text = page_text.strip()

    num_tokens = len(tokens)

    if num_tokens > 10:
        openai.api_key = contraseña
        # get the response from openai API
        try:
            response = openai.Completion.create(
                engine="text-davinci-003",
                prompt=request + "\n\n" + ">>\n" + page_text + "\n<<",
                max_tokens=2048,
                temperature=temp,
                top_p=0.9,
            )
            # get the response text
            response_text = response.choices[0].text
            total_tokens = response["usage"]["total_tokens"]

            # clean the response text
            response_text = re.sub(r'\s+', ' ', response_text)
            response_text = response_text.strip()
            return page.text, response_text, total_tokens
        except Exception as e:
            return page.text, f"--- An error occurred while processing the request: {e} ---", num_tokens
    return page.text, "--- Min number of tokens:", num_tokens

# define the gradio interface
iface = gr.Interface(
    fn=text_prompt,
    inputs=[gr.Textbox(lines=1, placeholder="Enter your prompt here...", label="Prompt:", type="text"),
            gr.Textbox(lines=1, placeholder="Enter the URL here...", label="URL to parse:", type="text"),
            gr.Textbox(lines=1, placeholder="Enter your API-key here...", label="API-Key:", type="password"),
            gr.Slider(0.0,1.0, value=0.3, label="Temperature:")
            ],
    outputs=[gr.Textbox(label="Input:"), gr.Textbox(label="Output:"), gr.Textbox(label="Total Tokens:")],
    examples=[["Summarize the following text as a list:","https://blog.google/outreach-initiatives/google-org/our-commitment-on-using-ai-to-accelerate-progress-on-global-development-goals/","",0.3],
            ["Generate a summary of the following text. Give me an overview of main business impact from the text following this template:\n- Summary:\n- Business Impact:\n- Companies:", "https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html","",0.7],
            ["Generate the next insights based on the following text. Indicates N/A if the information is not available in the text.\n- Summary:\n- Acquisition Price:\n- Why is this important for the acquirer:\n- Business Line for the acquirer:\n- Tech Focus for the acquired (list):","https://techcrunch.com/2022/09/28/eqt-acquires-billtrust-a-company-automating-the-invoice-to-cash-process-for-1-7b/","",0.3]
    ],
    title="ChatGPT / GPT-3 info extraction from URL",
    description="This tool allows querying the text retrieved from the URL with newspaper3k lib and using OpenAI's [text-davinci-003] engine.\nThe URL text can be referenced in the prompt as \"following text\".\nA GPT2 tokenizer is included to ensure that the 1.800 token limit for OpenAI queries is not exceeded. Provide a prompt with your request, the url for text retrieval, your api-key and temperature to process the text."
)

# error capturing in integration as a component

error_message = ""

try:
    iface.queue(concurrency_count=20)
    iface.launch()
except Exception as e:
    error_message = "An error occurred: " + str(e)
    iface.outputs[1].value = error_message