import gradio as gr import os import openai from newspaper import Article import json import re from transformers import GPT2Tokenizer import requests # define the text summarizer function def text_prompt(request, page_url, contraseña, temp): try: headers = {'User-Agent': 'Chrome/83.0.4103.106'} response = requests.get(page_url, headers=headers) html = response.text page = Article('') page.set_html(html) page.parse() except Exception as e: return "", f"--- Ha ocurrido un error al procesar la URL: {e} ---", "" tokenizer = GPT2Tokenizer.from_pretrained("gpt2") sentences = page.text.split('.') tokens = [] page_text = "" for sentence in sentences: tokens.extend(tokenizer.tokenize(sentence)) # Recortar el texto a un máximo de 1800 tokens if len(tokens) > 1800: break page_text += sentence + ". " # Eliminar el ultimo espacio page_text = page_text.strip() num_tokens = len(tokens) if num_tokens > 10: openai.api_key = contraseña # get the response from openai API try: response = openai.Completion.create( engine="text-davinci-003", prompt=request + "\n\n" + page_text, max_tokens=2048, temperature=temp, top_p=0.9, ) # get the response text response_text = response.choices[0].text total_tokens = response["usage"]["total_tokens"] # clean the response text response_text = re.sub(r'\s+', ' ', response_text) response_text = response_text.strip() return page.text, response_text, total_tokens except Exception as e: return page.text, f"--- Ha ocurrido un error al procesar la solicitud: {e} ---", num_tokens return page.text, "--- Min number of tokens ---", num_tokens # define the gradio interface iface = gr.Interface( fn=text_prompt, inputs=[gr.Textbox(lines=1, placeholder="Enter your prompt here...", label="Prompt:", type="text"), gr.Textbox(lines=1, placeholder="Enter the URL here...", label="URL to parse:", type="text"), gr.Textbox(lines=1, placeholder="Enter your API-key here...", label="API-Key:", type="password"), gr.Slider(0.0,1.0, value=0.3, label="Temperature:") ], outputs=[gr.Textbox(label="Input:"), gr.Textbox(label="Output:"), gr.Textbox(label="Total Tokens:")], examples=[["Summarize the following text as a list:","https://blog.google/outreach-initiatives/google-org/our-commitment-on-using-ai-to-accelerate-progress-on-global-development-goals/","",0.3], ["Generate a summary of the following text. Give me an overview of main business impact from the text following this template:\n- Summary:\n- Business Impact:\n- Companies:", "https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html","",0.7], ["Generate the next insights based on the following text. Indicates N/A if the information is not available in the text.\n- Summary:\n- Acquisition Price:\n- Why is this important for the acquirer:\n- Business Line for the acquirer:\n- Tech Focus for the acquired (list):","https://techcrunch.com/2022/09/28/eqt-acquires-billtrust-a-company-automating-the-invoice-to-cash-process-for-1-7b/","",0.3] ], title="ChatGPT info extraction with newspaper3k", description="This tool allows querying the text retrieved from the URL using OpenAI's [text-davinci-003] engine.\nThe URL text can be referenced in the prompt as \"following text\".\nA GPT2 tokenizer is included to ensure that the 2000 token limit for OpenAI queries is not exceeded. Provide a prompt with your request, the url for text retrieval, your api-key and temperature to process the text." ) # captura de errores en la integración como componente error_message = "" try: iface.launch() except Exception as e: error_message = "An error occurred: " + str(e) iface.outputs[1].value = error_message