Spaces:
Running
Running
Add .gitignore, update requirements, and enhance README with detailed features and usage instructions
Browse files- .gitignore +2 -0
- README.md +86 -2
- app.py +177 -95
- requirements.txt +1 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.conda
|
2 |
+
.env
|
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Groq-LLaMA3.
|
3 |
emoji: π
|
4 |
colorFrom: yellow
|
5 |
colorTo: blue
|
@@ -10,4 +10,88 @@ pinned: false
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Groq-LLaMA3.x
|
3 |
emoji: π
|
4 |
colorFrom: yellow
|
5 |
colorTo: blue
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
# Groq Chat with LLaMA3x
|
14 |
+
|
15 |
+
A Streamlit-based chat application that leverages Groq's API to interact with LLaMA3x models.
|
16 |
+
|
17 |
+
## Features
|
18 |
+
|
19 |
+
### Model Integration
|
20 |
+
- Seamless integration with Groq's LLaMA3x model family
|
21 |
+
- Dynamic model selection from available LLaMA variants
|
22 |
+
- Automatic model metadata fetching and display
|
23 |
+
- Model-specific token limit handling
|
24 |
+
|
25 |
+
### Chat Interface
|
26 |
+
- Real-time streaming responses with character-by-character display
|
27 |
+
- Non-streaming mode for batch responses
|
28 |
+
- Persistent chat history with session management
|
29 |
+
- Clear chat functionality
|
30 |
+
- User-friendly message input system
|
31 |
+
- Distinct avatars for user (π§βπ») and assistant (π) messages
|
32 |
+
|
33 |
+
### Performance Controls
|
34 |
+
- Adjustable token limit slider with model-specific maximums
|
35 |
+
- Toggle between streaming and non-streaming modes
|
36 |
+
- Automatic session state management
|
37 |
+
- Error handling with user-friendly error messages
|
38 |
+
|
39 |
+
### Usage Analytics
|
40 |
+
- Real-time token usage tracking
|
41 |
+
- Prompt tokens
|
42 |
+
- Response tokens
|
43 |
+
- Total tokens used
|
44 |
+
- Performance timing metrics
|
45 |
+
- Prompt processing time
|
46 |
+
- Response generation time
|
47 |
+
- Total interaction time
|
48 |
+
|
49 |
+
### UI/UX Features
|
50 |
+
- Responsive wide-layout design
|
51 |
+
- Sidebar with model controls and settings
|
52 |
+
- Groq branding integration
|
53 |
+
- Important disclaimer for AI-generated content
|
54 |
+
- Clear visual hierarchy with markdown formatting
|
55 |
+
|
56 |
+
## Prerequisites
|
57 |
+
|
58 |
+
- Python 3.7+
|
59 |
+
- Groq API key
|
60 |
+
- Required Python packages:
|
61 |
+
- streamlit
|
62 |
+
- groq
|
63 |
+
- python-dotenv
|
64 |
+
|
65 |
+
## Installation
|
66 |
+
|
67 |
+
1. Clone the repository
|
68 |
+
2. Install dependencies:
|
69 |
+
```bash
|
70 |
+
pip install streamlit groq python-dotenv
|
71 |
+
```
|
72 |
+
3. Create a `.env` file and add your Groq API key:
|
73 |
+
```
|
74 |
+
GROQ_API_KEY=your_api_key_here
|
75 |
+
```
|
76 |
+
|
77 |
+
## Usage
|
78 |
+
|
79 |
+
Run the application:
|
80 |
+
```bash
|
81 |
+
streamlit run app.py
|
82 |
+
```
|
83 |
+
|
84 |
+
The app will open in your default browser, featuring:
|
85 |
+
- Model selection dropdown
|
86 |
+
- Adjustable token limit slider
|
87 |
+
- Streaming mode toggle
|
88 |
+
- Clear chat functionality
|
89 |
+
- Real-time usage statistics
|
90 |
+
|
91 |
+
## Security Note
|
92 |
+
|
93 |
+
Always keep your API key secure and never commit it to version control. The application uses environment variables for sensitive data management.
|
94 |
+
|
95 |
+
## License
|
96 |
+
|
97 |
+
MIT
|
app.py
CHANGED
@@ -1,128 +1,210 @@
|
|
1 |
import os
|
2 |
from dotenv import find_dotenv, load_dotenv
|
3 |
import streamlit as st
|
4 |
-
from typing import Generator
|
5 |
from groq import Groq
|
6 |
|
7 |
-
|
8 |
-
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
st.write(
|
14 |
-
f'<span style="font-size: 78px; line-height: 1">{emoji}</span>',
|
15 |
-
unsafe_allow_html=True,
|
16 |
-
)
|
17 |
|
|
|
|
|
18 |
|
19 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
# Initialize
|
28 |
if "messages" not in st.session_state:
|
29 |
st.session_state.messages = []
|
30 |
|
31 |
if "selected_model" not in st.session_state:
|
32 |
st.session_state.selected_model = None
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
# Layout for model selection and max_tokens slider
|
50 |
-
col1, col2 = st.columns([1, 3]) # Adjust the ratio to make the first column smaller
|
51 |
-
|
52 |
-
|
53 |
-
with col1:
|
54 |
-
model_option = st.selectbox(
|
55 |
-
"Choose a model:",
|
56 |
-
options=list(models.keys()),
|
57 |
-
format_func=lambda x: models[x]["name"],
|
58 |
-
index=0, # Default to the first model in the list
|
59 |
)
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
)
|
69 |
|
70 |
-
#
|
71 |
-
|
72 |
-
st.session_state.messages = []
|
73 |
-
st.session_state.selected_model = model_option
|
74 |
|
75 |
-
#
|
76 |
-
if st.button("Clear Chat"):
|
77 |
-
st.session_state.messages = []
|
78 |
-
|
79 |
-
# Display chat messages from history on app rerun
|
80 |
for message in st.session_state.messages:
|
81 |
avatar = "π" if message["role"] == "assistant" else "π§βπ»"
|
82 |
with st.chat_message(message["role"], avatar=avatar):
|
83 |
st.markdown(message["content"])
|
84 |
|
|
|
|
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
|
92 |
-
|
93 |
-
if prompt := st.chat_input("Enter your prompt here..."):
|
94 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
95 |
-
|
96 |
-
with st.chat_message("user", avatar="π§βπ»"):
|
97 |
-
st.markdown(prompt)
|
98 |
-
|
99 |
-
# Fetch response from Groq API
|
100 |
try:
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
st.session_state.messages.append(
|
121 |
{"role": "assistant", "content": full_response}
|
122 |
)
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
st.session_state.messages.append(
|
127 |
-
{"role": "assistant", "content": combined_response}
|
128 |
-
)
|
|
|
1 |
import os
|
2 |
from dotenv import find_dotenv, load_dotenv
|
3 |
import streamlit as st
|
|
|
4 |
from groq import Groq
|
5 |
|
6 |
+
# Load environment variables
|
7 |
+
load_dotenv(find_dotenv())
|
8 |
|
9 |
+
# Set up Streamlit page configuration
|
10 |
+
st.set_page_config(
|
11 |
+
page_icon="π",
|
12 |
+
layout="wide",
|
13 |
+
page_title="Groq & LLaMA3x Chat Bot"
|
14 |
+
)
|
15 |
|
16 |
+
# App Title
|
17 |
+
st.title("Groq Chat with LLaMA3x")
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Initialize the Groq client using the API key from the environment variables
|
20 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
21 |
|
22 |
+
# Cache the model fetching function to improve performance
|
23 |
+
@st.cache_data
|
24 |
+
def fetch_available_models():
|
25 |
+
"""
|
26 |
+
Fetches the available models from the Groq API.
|
27 |
+
Returns a list of models or an empty list if there's an error.
|
28 |
+
"""
|
29 |
+
try:
|
30 |
+
models_response = client.models.list()
|
31 |
+
return models_response.data
|
32 |
+
except Exception as e:
|
33 |
+
st.error(f"Error fetching models: {e}")
|
34 |
+
return []
|
35 |
|
36 |
+
# Load available models and filter them
|
37 |
+
available_models = fetch_available_models()
|
38 |
+
filtered_models = [
|
39 |
+
model for model in available_models if model.id.startswith('llama-3')
|
40 |
+
]
|
41 |
|
42 |
+
# Prepare a dictionary of model metadata
|
43 |
+
models = {
|
44 |
+
model.id: {
|
45 |
+
"name": model.id,
|
46 |
+
"tokens": 4000,
|
47 |
+
"developer": model.owned_by,
|
48 |
+
}
|
49 |
+
for model in filtered_models
|
50 |
+
}
|
51 |
|
52 |
+
# Initialize session state variables
|
53 |
if "messages" not in st.session_state:
|
54 |
st.session_state.messages = []
|
55 |
|
56 |
if "selected_model" not in st.session_state:
|
57 |
st.session_state.selected_model = None
|
58 |
|
59 |
+
# Sidebar: Controls
|
60 |
+
with st.sidebar:
|
61 |
+
|
62 |
+
# Powered by Groq logo
|
63 |
+
st.markdown(
|
64 |
+
"""
|
65 |
+
<a href="https://groq.com" target="_blank" rel="noopener noreferrer">
|
66 |
+
<img
|
67 |
+
src="https://groq.com/wp-content/uploads/2024/03/PBG-mark1-color.svg"
|
68 |
+
alt="Powered by Groq for fast inference."
|
69 |
+
width="100%"
|
70 |
+
/>
|
71 |
+
</a>
|
72 |
+
""",
|
73 |
+
unsafe_allow_html=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
)
|
75 |
+
st.markdown("---")
|
76 |
+
|
77 |
+
# Define a function to clear messages when the model changes
|
78 |
+
def reset_chat_on_model_change():
|
79 |
+
st.session_state.messages = []
|
80 |
+
|
81 |
+
# Model selection dropdown
|
82 |
+
if models:
|
83 |
+
model_option = st.selectbox(
|
84 |
+
"Choose a model:",
|
85 |
+
options=list(models.keys()),
|
86 |
+
format_func=lambda x: f"{models[x]['name']} ({models[x]['developer']})",
|
87 |
+
on_change=reset_chat_on_model_change, # Reset chat when model changes
|
88 |
+
)
|
89 |
+
else:
|
90 |
+
st.warning("No available models to select.")
|
91 |
+
model_option = None
|
92 |
+
|
93 |
+
# Token limit slider
|
94 |
+
if models:
|
95 |
+
max_tokens_range = models[model_option]["tokens"]
|
96 |
+
max_tokens = st.slider(
|
97 |
+
"Max Tokens:",
|
98 |
+
min_value=200,
|
99 |
+
max_value=max_tokens_range,
|
100 |
+
value=max(100, int(max_tokens_range * 0.5)),
|
101 |
+
step=256,
|
102 |
+
help=f"Adjust the maximum number of tokens for the response. Maximum for the selected model: {max_tokens_range}"
|
103 |
+
)
|
104 |
+
else:
|
105 |
+
max_tokens = 200
|
106 |
+
|
107 |
+
# Additional options
|
108 |
+
stream_mode = st.checkbox("Enable Streaming", value=True)
|
109 |
+
|
110 |
+
# Button to clear the chat
|
111 |
+
if st.button("Clear Chat"):
|
112 |
+
st.session_state.messages = []
|
113 |
+
|
114 |
+
st.markdown("### Usage Summary")
|
115 |
+
usage_box = st.empty()
|
116 |
+
|
117 |
+
# Disclaimer
|
118 |
+
st.markdown(
|
119 |
+
"""
|
120 |
+
-----
|
121 |
+
β οΈ **Important:**
|
122 |
+
*The responses provided by this application are generated automatically using an AI model.
|
123 |
+
Users are responsible for verifying the accuracy of the information before relying on it.
|
124 |
+
Always cross-check facts and data for critical decisions.*
|
125 |
+
"""
|
126 |
)
|
127 |
|
128 |
+
# Main Chat Interface
|
129 |
+
st.markdown("### Chat Interface")
|
|
|
|
|
130 |
|
131 |
+
# Display the chat history
|
|
|
|
|
|
|
|
|
132 |
for message in st.session_state.messages:
|
133 |
avatar = "π" if message["role"] == "assistant" else "π§βπ»"
|
134 |
with st.chat_message(message["role"], avatar=avatar):
|
135 |
st.markdown(message["content"])
|
136 |
|
137 |
+
# Capture user input
|
138 |
+
user_input = st.chat_input("Enter your message here...")
|
139 |
|
140 |
+
if user_input:
|
141 |
+
# Append the user input to the session state
|
142 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
143 |
+
with st.chat_message("user", avatar="π§βπ»"):
|
144 |
+
st.markdown(user_input)
|
145 |
|
146 |
+
# Generate a response using the selected model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
try:
|
148 |
+
full_response = ""
|
149 |
+
usage_summary = ""
|
150 |
+
|
151 |
+
if stream_mode:
|
152 |
+
# Generate a response with streaming enabled
|
153 |
+
chat_completion = client.chat.completions.create(
|
154 |
+
model=model_option,
|
155 |
+
messages=[
|
156 |
+
{"role": m["role"], "content": m["content"]}
|
157 |
+
for m in st.session_state.messages
|
158 |
+
],
|
159 |
+
max_tokens=max_tokens,
|
160 |
+
stream=True
|
161 |
+
)
|
162 |
+
|
163 |
+
with st.chat_message("assistant", avatar="π"):
|
164 |
+
response_placeholder = st.empty()
|
165 |
+
|
166 |
+
for chunk in chat_completion:
|
167 |
+
if chunk.choices[0].delta.content:
|
168 |
+
full_response += chunk.choices[0].delta.content
|
169 |
+
response_placeholder.markdown(full_response)
|
170 |
+
else:
|
171 |
+
# Generate a response without streaming
|
172 |
+
chat_completion = client.chat.completions.create(
|
173 |
+
model=model_option,
|
174 |
+
messages=[
|
175 |
+
{"role": m["role"], "content": m["content"]}
|
176 |
+
for m in st.session_state.messages
|
177 |
+
],
|
178 |
+
max_tokens=max_tokens,
|
179 |
+
stream=False
|
180 |
+
)
|
181 |
+
|
182 |
+
response = chat_completion.choices[0].message.content
|
183 |
+
usage_data = chat_completion.usage
|
184 |
+
|
185 |
+
with st.chat_message("assistant", avatar="π"):
|
186 |
+
st.markdown(response)
|
187 |
+
full_response = response
|
188 |
+
|
189 |
+
if usage_data:
|
190 |
+
usage_summary = (
|
191 |
+
f"**Token Usage:**\n"
|
192 |
+
f"- Prompt Tokens: {usage_data.prompt_tokens}\n"
|
193 |
+
f"- Response Tokens: {usage_data.completion_tokens}\n"
|
194 |
+
f"- Total Tokens: {usage_data.total_tokens}\n\n"
|
195 |
+
f"**Timings:**\n"
|
196 |
+
f"- Prompt Time: {round(usage_data.prompt_time,5)} secs\n"
|
197 |
+
f"- Response Time: {round(usage_data.completion_time,5)} secs\n"
|
198 |
+
f"- Total Time: {round(usage_data.total_time,5)} secs"
|
199 |
+
)
|
200 |
+
|
201 |
+
if usage_summary:
|
202 |
+
usage_box.markdown(usage_summary)
|
203 |
+
|
204 |
+
# Append the assistant's response to the session state
|
205 |
st.session_state.messages.append(
|
206 |
{"role": "assistant", "content": full_response}
|
207 |
)
|
208 |
+
|
209 |
+
except Exception as e:
|
210 |
+
st.error(f"Error generating the response: {e}")
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
streamlit
|
2 |
groq
|
3 |
python-dotenv
|
|
|
|
1 |
streamlit
|
2 |
groq
|
3 |
python-dotenv
|
4 |
+
watchdog
|