Spaces:
Running
on
Zero
Running
on
Zero
File size: 34,699 Bytes
b887586 6873531 b887586 8a80eb5 b887586 0dc3eb6 b887586 0dc3eb6 b887586 9411f2b b887586 8a80eb5 b887586 8a80eb5 b887586 8a80eb5 b887586 8a80eb5 f5cc347 f084bcc 8a80eb5 f5cc347 8a80eb5 b887586 5224929 b887586 5224929 b887586 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 |
#!/usr/bin/env python3
# Code by Kat Crowson in k-diffusion repo, modified by Scott H Hawley (SHH)
# Modified by Scott H. Hawley for masking, ZeroGPU ets.
"""Samples from k-diffusion models."""
import argparse
from pathlib import Path
import accelerate
import safetensors.torch as safetorch
import torch
from tqdm import trange, tqdm
from PIL import Image
from torchvision import transforms
import k_diffusion as K
from pom.v_diffusion import DDPM, LogSchedule, CrashSchedule
#CHORD_BORDER = 8 # chord border size in pixels
from pom.chords import CHORD_BORDER, img_batch_to_seq_emb, ChordSeqEncoder
# ---- my mangled sampler that includes repaint
import torchsde
class BatchedBrownianTree:
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
def __init__(self, x, t0, t1, seed=None, **kwargs):
t0, t1, self.sign = self.sort(t0, t1)
w0 = kwargs.get('w0', torch.zeros_like(x))
if seed is None:
seed = torch.randint(0, 2 ** 63 - 1, []).item()
self.batched = True
try:
assert len(seed) == x.shape[0]
w0 = w0[0]
except TypeError:
seed = [seed]
self.batched = False
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
@staticmethod
def sort(a, b):
return (a, b, 1) if a < b else (b, a, -1)
def __call__(self, t0, t1):
t0, t1, sign = self.sort(t0, t1)
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
return w if self.batched else w[0]
class BrownianTreeNoiseSampler:
"""A noise sampler backed by a torchsde.BrownianTree.
Args:
x (Tensor): The tensor whose shape, device and dtype to use to generate
random samples.
sigma_min (float): The low end of the valid interval.
sigma_max (float): The high end of the valid interval.
seed (int or List[int]): The random seed. If a list of seeds is
supplied instead of a single integer, then the noise sampler will
use one BrownianTree per batch item, each with its own seed.
transform (callable): A function that maps sigma to the sampler's
internal timestep.
"""
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
self.transform = transform
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
self.tree = BatchedBrownianTree(x, t0, t1, seed)
def __call__(self, sigma, sigma_next):
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
return x[(...,) + (None,) * dims_to_append]
def to_d(x, sigma, denoised):
"""Converts a denoiser output to a Karras ODE derivative."""
return (x - denoised) / append_dims(sigma, x.ndim)
@torch.no_grad()
def my_sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., repaint=1):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
for u in range(repaint):
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
eps = torch.randn_like(x) * s_noise
sigma_hat = sigmas[i] * (gamma + 1)
if gamma > 0:
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
dt = sigmas[i + 1] - sigma_hat
# Euler method
x = x + d * dt
if x.isnan().any():
assert False, f"x has NaNs, i = {i}, u = {u}, repaint = {repaint}"
if u < repaint - 1:
beta = (sigmas[i + 1] / sigmas[-1]) ** 2
x = torch.sqrt(1 - beta) * x + torch.sqrt(beta) * torch.randn_like(x)
return x
def get_scalings(sigma, sigma_data=0.5):
c_skip = sigma_data ** 2 / (sigma ** 2 + sigma_data ** 2)
c_out = sigma * sigma_data / (sigma ** 2 + sigma_data ** 2) ** 0.5
c_in = 1 / (sigma ** 2 + sigma_data ** 2) ** 0.5
return c_skip, c_out, c_in
@torch.no_grad()
def my_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None,
disable=None, eta=1., s_noise=1., noise_sampler=None,
solver_type='midpoint',
repaint=4):
"""DPM-Solver++(2M) SDE. but with repaint added"""
if solver_type not in {'heun', 'midpoint'}:
raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
old_denoised = None
h_last = None
old_x = None
for i in trange(len(sigmas) - 1, disable=disable): # time loop
for u in range(repaint):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
#print("i, u, sigmas[i], sigmas[i + 1] = ", i, u, sigmas[i], sigmas[i + 1])
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
# DPM-Solver++(2M) SDE
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
h = s - t
eta_h = eta * h
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
if old_denoised is not None:
r = h_last / h
if solver_type == 'heun':
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
elif solver_type == 'midpoint':
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
if eta:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if x.isnan().any():
assert False, f"x has NaNs, i = {i}, u = {u}, repaint = {repaint}"
if u < repaint - 1:
# RePaint: go "back" in integration via the "forward" process, by adding a little noise to x
# ...but scaled properly!
# But how to convert from original RePaint to k-diffusion? I'll try a few variants
repaint_choice = 'orig' # ['orig','var1','var2', etc...]
sigma_diff = (sigmas[i] - sigmas[i+1]).abs()
sigma_ratio = ( sigmas[i+1] / sigma_max ) # use i+1 or i?
if repaint_choice == 'orig': # attempt at original RePaint algorithm, which used betas
# if sigmas are the std devs, then betas are variances? but beta_max = 1, so how to get that? ratio?
beta = sigma_ratio**2
x = torch.sqrt(1-beta)*x + torch.sqrt(beta)*torch.randn_like(x) # this is from RePaint Paper
elif repaint_choice == 'var1': # or maybe this...? # worse than orig
x = x + sigma_diff*torch.randn_like(x)
elif repaint_choice == 'var2': # or this...? # yields NaNs
x = (1-sigma_diff)*x + sigma_diff*torch.randn_like(x)
elif repaint_choice == 'var3': # results similar to var1
x = (1.0-sigma_ratio)*x + sigmas[i+1]*torch.randn_like(x)
elif repaint_choice == 'var4': # NaNs # stealing code from elsewhere, no idea WTF I'm doing.
#Invert this: target = (input - c_skip * noised_input) / c_out, where target = model_output
x_tm1, x_t = x, old_x
# x_tm1 = ( x_0 - c_skip * noised_x0 ) / c_out
# So x_tm1*c_out = x_0 - c_skip * noised_x0
input, noise = x_tm1, torch.randn_like(x)
noised_input = input + noise * append_dims(sigma_diff, input.ndim)
c_skip, c_out, c_in = [append_dims(x, input.ndim) for x in get_scalings(sigmas[i])]
model_output = x_tm1
renoised_x = c_out * model_output + c_skip * noised_input
x = renoised_x
elif repaint_choice == 'var5':
x = torch.sqrt((1-(sigma_diff/sigma_max)**2))*x + sigma_diff*torch.randn_like(x)
# include this? guessing no.
#old_denoised = denoised
#h_last = h
old_denoised = denoised
h_last = h
old_x = x
return x
# -----from stable-audio-tools
# Define the noise schedule and sampling loop
def get_alphas_sigmas(t):
"""Returns the scaling factors for the clean image (alpha) and for the
noise (sigma), given a timestep."""
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
def alpha_sigma_to_t(alpha, sigma):
"""Returns a timestep, given the scaling factors for the clean image and for
the noise."""
return torch.atan2(sigma, alpha) / math.pi * 2
def t_to_alpha_sigma(t):
"""Returns the scaling factors for the clean image and for the noise, given
a timestep."""
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
@torch.no_grad()
def sample(model, x, steps, eta, **extra_args):
"""Draws samples from a model given starting noise. v-diffusion"""
ts = x.new_ones([x.shape[0]])
# Create the noise schedule
t = torch.linspace(1, 0, steps + 1)[:-1]
alphas, sigmas = get_alphas_sigmas(t)
# The sampling loop
for i in trange(steps):
# Get the model output (v, the predicted velocity)
with torch.cuda.amp.autocast():
v = model(x, ts * t[i], **extra_args).float()
# Predict the noise and the denoised image
pred = x * alphas[i] - v * sigmas[i]
eps = x * sigmas[i] + v * alphas[i]
# If we are not on the last timestep, compute the noisy image for the
# next timestep.
if i < steps - 1:
# If eta > 0, adjust the scaling factor for the predicted noise
# downward according to the amount of additional noise to add
ddim_sigma = eta * (sigmas[i + 1]**2 / sigmas[i]**2).sqrt() * \
(1 - alphas[i]**2 / alphas[i + 1]**2).sqrt()
adjusted_sigma = (sigmas[i + 1]**2 - ddim_sigma**2).sqrt()
# Recombine the predicted noise and predicted denoised image in the
# correct proportions for the next step
x = pred * alphas[i + 1] + eps * adjusted_sigma
# Add the correct amount of fresh noise
if eta:
x += torch.randn_like(x) * ddim_sigma
# If we are on the last timestep, output the denoised image
return pred
# Soft mask inpainting is just shrinking hard (binary) mask inpainting
# Given a float-valued soft mask (values between 0 and 1), get the binary mask for this particular step
def get_bmask(i, steps, mask):
strength = (i+1)/(steps)
# convert to binary mask
bmask = torch.where(mask<=strength,1,0)
return bmask
def make_cond_model_fn(model, cond_fn):
def cond_model_fn(x, sigma, **kwargs):
with torch.enable_grad():
x = x.detach().requires_grad_()
denoised = model(x, sigma, **kwargs)
cond_grad = cond_fn(x, sigma, denoised=denoised, **kwargs).detach()
cond_denoised = denoised.detach() + cond_grad * K.utils.append_dims(sigma**2, x.ndim)
return cond_denoised
return cond_model_fn
# Uses k-diffusion from https://github.com/crowsonkb/k-diffusion
# init_data is init_audio as latents (if this is latent diffusion)
# For sampling, set both init_data and mask to None
# For variations, set init_data
# For inpainting, set both init_data & mask
def sample_k(
model_fn,
noise,
init_data=None,
mask=None,
steps=100,
sampler_type="dpmpp-2m-sde",
sigma_min=0.5,
sigma_max=50,
rho=1.0, device="cuda",
callback=None,
cond_fn=None,
model_config=None,
repaint=1,
**extra_args
):
#denoiser = K.external.VDenoiser(model_fn)
denoiser = K.Denoiser(model_fn, sigma_data=model_config['sigma_data'])
if cond_fn is not None:
denoiser = make_cond_model_fn(denoiser, cond_fn)
# Make the list of sigmas. Sigma values are scalars related to the amount of noise each denoising step has
#sigmas = K.sampling.get_sigmas_polyexponential(steps, sigma_min, sigma_max, rho, device=device)
sigmas = K.sampling.get_sigmas_karras(steps, sigma_min, sigma_max, rho=7., device=device)
print("sigmas[0] = ", sigmas[0])
# Scale the initial noise by sigma
noise = noise * sigmas[0]
wrapped_callback = callback
if mask is None and init_data is not None:
# VARIATION (no inpainting)
# set the initial latent to the init_data, and noise it with initial sigma
x = init_data + noise
elif mask is not None and init_data is not None:
# INPAINTING
bmask = get_bmask(0, steps, mask)
# initial noising
input_noised = init_data + noise
# set the initial latent to a mix of init_data and noise, based on step 0's binary mask
x = input_noised * bmask + noise * (1-bmask)
# define the inpainting callback function (Note: side effects, it mutates x)
# See https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py#L596C13-L596C105
# callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
# This is called immediately after `denoised = model(x, sigmas[i] * s_in, **extra_args)`
def inpainting_callback(args):
i = args["i"]
x = args["x"]
sigma = args["sigma"]
#denoised = args["denoised"]
# noise the init_data input with this step's appropriate amount of noise
input_noised = init_data + torch.randn_like(init_data) * sigma
# shrinking hard mask
bmask = get_bmask(i, steps, mask)
# mix input_noise with x, using binary mask
new_x = input_noised * bmask + x * (1-bmask)
# mutate x
x[:,:,:] = new_x[:,:,:]
# wrap together the inpainting callback and the user-submitted callback.
if callback is None:
wrapped_callback = inpainting_callback
else:
wrapped_callback = lambda args: (inpainting_callback(args), callback(args))
else:
# SAMPLING
# set the initial latent to noise
x = noise
print("sample_k: x.min, x.max = ", x.min(), x.max())
print(f"sample_k: key, val.dtype = ",[ (key, val.dtype if val is not None else val) for key,val in extra_args.items()])
with torch.cuda.amp.autocast():
if sampler_type == "k-heun":
return K.sampling.sample_heun(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-lms":
return K.sampling.sample_lms(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpmpp-2s-ancestral":
return K.sampling.sample_dpmpp_2s_ancestral(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpm-2":
return K.sampling.sample_dpm_2(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpm-fast":
return K.sampling.sample_dpm_fast(denoiser, x, sigma_min, sigma_max, steps, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpm-adaptive":
return K.sampling.sample_dpm_adaptive(denoiser, x, sigma_min, sigma_max, rtol=0.01, atol=0.01, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "dpmpp-2m-sde":
return K.sampling.sample_dpmpp_2m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "my-dpmpp-2m-sde":
return my_dpmpp_2m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, repaint=repaint, extra_args=extra_args)
elif sampler_type == "dpmpp-3m-sde":
return K.sampling.sample_dpmpp_3m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "my-sample-euler":
return my_sample_euler(denoiser, x, sigmas, disable=False, callback=wrapped_callback, repaint=repaint, extra_args=extra_args)
## ---- end stable-audio-tools
#@spaces.GPU
def infer_mask_from_init_img(img, mask_with='white'):
"""given an image with mask areas marked, extract the mask itself
note, this works whether image is normalized on 0..1 or -1..1, but not 0..255"""
print("Inferring mask from init_img")
assert mask_with in ['blue','white']
if not torch.is_tensor(img):
img = ToTensor()(img)
mask = torch.zeros(img.shape[-2:])
if mask_with == 'white':
mask[ (img[0,:,:]==1) & (img[1,:,:]==1) & (img[2,:,:]==1)] = 1
elif mask_with == 'blue':
mask[img[2,:,:]==1] = 1 # blue
return mask*1.0
def grow_mask(init_mask, grow_by=2):
"adds a border of grow_by pixels to the mask, by growing it grow_by times. If grow_by=0, does nothing"
new_mask = init_mask.clone()
for c in range(grow_by):
# wherever mask is bordered by a 1, set it to 1
new_mask[1:-1,1:-1] = (new_mask[1:-1,1:-1] + new_mask[0:-2,1:-1] + new_mask[2:,1:-1] + new_mask[1:-1,0:-2] + new_mask[1:-1,2:]) > 0
return new_mask
def add_seeding(init_image, init_mask, grow_by=0, seed_scale=1.0):
"adds extra noise inside mask"
init_mask = grow_mask(init_mask, grow_by=grow_by) # make the mask bigger
if not torch.is_tensor(init_image):
init_image = ToTensor()(init_image)
init_image = init_image.clone()
# wherever mask is 1, set first set init_image to min value
init_image[:,init_mask == 1] = init_image.min()
init_image = init_image + seed_scale*torch.randn_like(init_image) * (init_mask) # add noise where mask is 1
# wherever the mask is 1, set the blue channel to -1.0, otherwise leave it alone
init_image[2,:,:] = init_image[2,:,:] * (1-init_mask) - 1.0*init_mask
return init_image
def get_init_image_and_mask(args, device):
convert_tensor = transforms.ToTensor()
init_image = Image.open(args.init_image).convert('RGB')
init_image = convert_tensor(init_image)
#normalize image from 0..1 to -1..1
init_image = (2.0 * init_image) - 1.0
init_mask = torch.ones(init_image.shape[-2:]) # ones are where stuff will change, zeros will stay the same
inpaint_task = 'infer' # infer mask from init_image
assert inpaint_task in ['accomp','chords','melody','nucleation','notes','continue','infer']
if inpaint_task in ['melody','accomp']:
init_mask[0:70,:] = 0 # zero out a melody strip of image near top
init_mask[128+0:128+70,:] = 0 # zero out a melody strip of image along bottom row
if inpaint_task == 'melody':
init_mask = 1 - init_mask
elif inpaint_task in ['notes','chords']:
# keep chords only
#init_mask = torch.ones_like(x)
init_mask[0:CHORD_BORDER,:] = 0 # top row of 256x256
init_mask[128-CHORD_BORDER:128+CHORD_BORDER,:] = 0 # middle rows of 256x256
init_mask[-CHORD_BORDER:,:] = 0 # bottom row of 256x256
if inpaint_task == 'chords':
init_mask = 1 - init_mask # inverse: genereate chords given notes
elif inpaint_task == 'continue':
init_mask[0:128,:] = 0 # remember it's a square, so just mask out the bottom half
elif inpaint_task == 'nucleation':
# set mask to wherever the blue channel is >= 0.9
init_mask = (init_image[2,:,:] > 0.0)*1.0
# zero out init mask in top and bottom borders
init_mask[0:CHORD_BORDER,:] = 0
init_mask[-CHORD_BORDER:,:] = 0
init_mask[128-CHORD_BORDER:128+CHORD_BORDER,:] = 0
# remove all blue in init_image between the borders
init_image[2,CHORD_BORDER:128-CHORD_BORDER,:] = -1.0
init_image[2,128+CHORD_BORDER:-CHORD_BORDER,:] = -1.0
# grow the sides of the mask by one pixel:
# wherever mask is zero but is bordered by a 1, set it to 1
init_mask[1:-1,1:-1] = (init_mask[1:-1,1:-1] + init_mask[0:-2,1:-1] + init_mask[2:,1:-1] + init_mask[1:-1,0:-2] + init_mask[1:-1,2:]) > 0
#init_mask[1:-1,1:-1] = (init_mask[1:-1,1:-1] + init_mask[0:-2,1:-1] + init_mask[2:,1:-1] + init_mask[1:-1,0:-2] + init_mask[1:-1,2:]) > 0
elif inpaint_task == 'infer':
init_mask = infer_mask_from_init_img(init_image, mask_with='white')
# Also black out init_image wherever init mask is 1
init_image[:,init_mask == 1] = init_image.min()
if args.seed_scale > 0: # driving nucleation
print("Seeding nucleation, seed_scale = ", args.seed_scale)
init_image = add_seeding(init_image, init_mask, grow_by=0, seed_scale=args.seed_scale)
# remove any blue in middle of init image
print("init_image.shape = ", init_image.shape)
init_image[2,CHORD_BORDER:128-CHORD_BORDER,:] = -1.0
init_image[2,128+CHORD_BORDER:-CHORD_BORDER,:] = -1.0
# Debugging: output some images so we can see what's going on
init_mask_t = init_mask.float()*255 # convert mask to 0..255 for writing as image
# Convert to NumPy array and rearrange dimensions
init_mask_img_numpy = init_mask_t.byte().cpu().numpy()#.transpose(1, 2, 0)
init_mask_debug_img = Image.fromarray(init_mask_img_numpy)
init_mask_debug_img.save("init_mask_debug.png")
init_image_debug_img = Image.fromarray((init_image*127.5+127.5).byte().cpu().numpy().transpose(1,2,0))
init_image_debug_img.save("init_image_debug.png")
# reshape image and mask to be 4D tensors
init_image = init_image.unsqueeze(0).repeat(args.batch_size, 1, 1, 1)
init_mask = init_mask.unsqueeze(0).unsqueeze(1).repeat(args.batch_size,3,1,1).float()
return init_image.to(device), init_mask.to(device)
# wrapper compatible with ZeroGPU+Gradio, callable from outside
def zero_wrapper(args, accelerator, device):
global init_image, init_mask
print("zero_wrapper: Using device:", device, flush=True)
config = K.config.load_config(args.config if args.config else args.checkpoint)
model_config = config['model']
# TODO: allow non-square input sizes
assert len(model_config['input_size']) == 2 and model_config['input_size'][0] == model_config['input_size'][1]
size = model_config['input_size']
print('zero_wrapper: Using device:', device, flush=True)
inner_model = K.config.make_model(config).eval().requires_grad_(False).to(device)
cse = None # ChordSeqEncoder().eval().requires_grad_(False).to(device) # add chord embedding-maker to main model
if cse is not None:
inner_model.cse = cse
try:
inner_model.load_state_dict(safetorch.load_file(args.checkpoint))
except:
#ckpt = torch.load(args.checkpoint).to(device)
ckpt = torch.load(args.checkpoint, map_location='cpu')
inner_model.load_state_dict(ckpt['model'])
print('Parameters:', K.utils.n_params(inner_model))
model = K.Denoiser(inner_model, sigma_data=model_config['sigma_data'])
sigma_min = model_config['sigma_min']
sigma_max = model_config['sigma_max']
torch.set_float32_matmul_precision('high')
extra_args = {}
init_image, init_mask = None, None
if args.init_image is not None:
init_image, init_mask = get_init_image_and_mask(args, device)
init_image = init_image.to(device)
init_mask = init_mask.to(device)
@torch.no_grad()
@K.utils.eval_mode(model)
def run():
global init_image, init_mask
if accelerator.is_local_main_process:
tqdm.write('Sampling...')
sigmas = K.sampling.get_sigmas_karras(args.steps, sigma_min, sigma_max, rho=7., device=device)
def sample_fn(n, debug=True):
x = torch.randn([n, model_config['input_channels'], size[0], size[1]], device=device) * sigma_max
print("n, sigma_max, x.min, x.max = ", n, sigma_max, x.min(), x.max())
if args.init_image is not None:
init_data, mask = get_init_image_and_mask(args, device)
init_data = args.seed_scale*x*mask + (1-mask)*init_data # extra nucleation?
if cse is not None:
chord_cond = img_batch_to_seq_emb(init_data, inner_model.cse).to(device)
else:
chord_cond = None
#print("init_data.shape, init_data.min, init_data.max = ", init_data.shape, init_data.min(), init_data.max())
else:
init_data, mask, chord_cond = None, None, None
# chord_cond doesn't work anyway so f it:
chord_cond = None
print("chord_cond = ", chord_cond)
if chord_cond is not None:
extra_args['chord_cond'] = chord_cond
# these two work:
#x_0 = K.sampling.sample_lms(model, x, sigmas, disable=not accelerator.is_local_main_process, extra_args=extra_args)
#x_0 = K.sampling.sample_dpmpp_2m_sde(model, x, sigmas, disable=not accelerator.is_local_main_process, extra_args=extra_args)
noise = torch.randn([n, model_config['input_channels'], size[0], size[1]], device=device)
sampler_type="my-dpmpp-2m-sde" # "k-lms"
#sampler_type="my-sample-euler"
#sampler_type="dpmpp-2m-sde"
#sampler_type = "dpmpp-3m-sde"
#sampler_type = "k-dpmpp-2s-ancestral"
print("dtypes:", [x.dtype if x is not None else None for x in [noise, init_data, mask, chord_cond]])
x_0 = sample_k(inner_model, noise, sampler_type=sampler_type,
init_data=init_data, mask=mask, steps=args.steps,
sigma_min=sigma_min, sigma_max=sigma_max, rho=7.,
device=device, model_config=model_config, repaint=args.repaint,
**extra_args)
#x_0 = sample_k(inner_model, noise, sampler_type="dpmpp-2m-sde", steps=100, sigma_min=0.5, sigma_max=50, rho=1., device=device, model_config=model_config, **extra_args)
print("x_0.min, x_0.max = ", x_0.min(), x_0.max())
if x_0.isnan().any():
assert False, "x_0 has NaNs"
# do gpu garbage collection before proceeding
torch.cuda.empty_cache()
return x_0
x_0 = K.evaluation.compute_features(accelerator, sample_fn, lambda x: x, args.n, args.batch_size)
if accelerator.is_main_process:
for i, out in enumerate(x_0):
filename = f'{args.prefix}_{i:05}.png'
K.utils.to_pil_image(out).save(filename)
try:
run()
except KeyboardInterrupt:
pass
def main():
global init_image, init_mask
p = argparse.ArgumentParser(description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
p.add_argument('--batch-size', type=int, default=64,
help='the batch size')
p.add_argument('--checkpoint', type=Path, required=True,
help='the checkpoint to use')
p.add_argument('--config', type=Path,
help='the model config')
p.add_argument('-n', type=int, default=64,
help='the number of images to sample')
p.add_argument('--prefix', type=str, default='out',
help='the output prefix')
p.add_argument('--repaint', type=int, default=1,
help='number of (re)paint steps')
p.add_argument('--steps', type=int, default=50,
help='the number of denoising steps')
p.add_argument('--seed-scale', type=float, default=0.0, help='strength of nucleation seeding')
p.add_argument('--init-image', type=Path, default=None, help='the initial image')
p.add_argument('--init-strength', type=float, default=1., help='strength of init image')
args = p.parse_args()
print("args =", args, flush=True)
config = K.config.load_config(args.config if args.config else args.checkpoint)
model_config = config['model']
# TODO: allow non-square input sizes
assert len(model_config['input_size']) == 2 and model_config['input_size'][0] == model_config['input_size'][1]
size = model_config['input_size']
accelerator = accelerate.Accelerator()
device = accelerator.device
print('Using device:', device, flush=True)
inner_model = K.config.make_model(config).eval().requires_grad_(False).to(device)
cse = None # ChordSeqEncoder().eval().requires_grad_(False).to(device) # add chord embedding-maker to main model
if cse is not None:
inner_model.cse = cse
try:
inner_model.load_state_dict(safetorch.load_file(args.checkpoint))
except:
#ckpt = torch.load(args.checkpoint).to(device)
ckpt = torch.load(args.checkpoint, map_location='cpu')
inner_model.load_state_dict(ckpt['model'])
accelerator.print('Parameters:', K.utils.n_params(inner_model))
model = K.Denoiser(inner_model, sigma_data=model_config['sigma_data'])
sigma_min = model_config['sigma_min']
sigma_max = model_config['sigma_max']
torch.set_float32_matmul_precision('high')
extra_args = {}
init_image, init_mask = None, None
if args.init_image is not None:
init_image, init_mask = get_init_image_and_mask(args, device)
init_image = init_image.to(device)
init_mask = init_mask.to(device)
@torch.no_grad()
@K.utils.eval_mode(model)
def run():
global init_image, init_mask
if accelerator.is_local_main_process:
tqdm.write('Sampling...')
sigmas = K.sampling.get_sigmas_karras(args.steps, sigma_min, sigma_max, rho=7., device=device)
def sample_fn(n, debug=True):
x = torch.randn([n, model_config['input_channels'], size[0], size[1]], device=device) * sigma_max
print("n, sigma_max, x.min, x.max = ", n, sigma_max, x.min(), x.max())
if args.init_image is not None:
init_data, mask = get_init_image_and_mask(args, device)
init_data = args.seed_scale*x*mask + (1-mask)*init_data # extra nucleation?
if cse is not None:
chord_cond = img_batch_to_seq_emb(init_data, inner_model.cse).to(device)
else:
chord_cond = None
#print("init_data.shape, init_data.min, init_data.max = ", init_data.shape, init_data.min(), init_data.max())
else:
init_data, mask, chord_cond = None, None, None
# chord_cond doesn't work anyway so f it:
chord_cond = None
print("chord_cond = ", chord_cond)
if chord_cond is not None:
extra_args['chord_cond'] = chord_cond
# these two work:
#x_0 = K.sampling.sample_lms(model, x, sigmas, disable=not accelerator.is_local_main_process, extra_args=extra_args)
#x_0 = K.sampling.sample_dpmpp_2m_sde(model, x, sigmas, disable=not accelerator.is_local_main_process, extra_args=extra_args)
noise = torch.randn([n, model_config['input_channels'], size[0], size[1]], device=device)
sampler_type="my-dpmpp-2m-sde" # "k-lms"
#sampler_type="my-sample-euler"
#sampler_type="dpmpp-2m-sde"
#sampler_type = "dpmpp-3m-sde"
#sampler_type = "k-dpmpp-2s-ancestral"
print("dtypes:", [x.dtype if x is not None else None for x in [noise, init_data, mask, chord_cond]])
x_0 = sample_k(inner_model, noise, sampler_type=sampler_type,
init_data=init_data, mask=mask, steps=args.steps,
sigma_min=sigma_min, sigma_max=sigma_max, rho=7.,
device=device, model_config=model_config, repaint=args.repaint,
**extra_args)
#x_0 = sample_k(inner_model, noise, sampler_type="dpmpp-2m-sde", steps=100, sigma_min=0.5, sigma_max=50, rho=1., device=device, model_config=model_config, **extra_args)
print("x_0.min, x_0.max = ", x_0.min(), x_0.max())
if x_0.isnan().any():
assert False, "x_0 has NaNs"
# do gpu garbage collection before proceeding
torch.cuda.empty_cache()
return x_0
x_0 = K.evaluation.compute_features(accelerator, sample_fn, lambda x: x, args.n, args.batch_size)
if accelerator.is_main_process:
for i, out in enumerate(x_0):
filename = f'{args.prefix}_{i:05}.png'
K.utils.to_pil_image(out).save(filename)
try:
run()
except KeyboardInterrupt:
pass
if __name__ == '__main__':
main()
|