PicturesOfMIDI / sample.py
drscotthawley's picture
adding zerogpu decorators
6873531
raw
history blame
30.3 kB
#!/usr/bin/env python3
# Code by Kat Crowson in k-diffusion repo, modified by Scott H Hawley (SHH)
# Modified by Scott H. Hawley for masking, ZeroGPU ets.
"""Samples from k-diffusion models."""
import gradio
import spaces
import natten
import argparse
from pathlib import Path
import accelerate
import safetensors.torch as safetorch
import torch
from tqdm import trange, tqdm
from PIL import Image
from torchvision import transforms
import k_diffusion as K
from pom.v_diffusion import DDPM, LogSchedule, CrashSchedule
#CHORD_BORDER = 8 # chord border size in pixels
from pom.chords import CHORD_BORDER, img_batch_to_seq_emb, ChordSeqEncoder
# ---- my mangled sampler that includes repaint
import torchsde
@spaces.GPU
class BatchedBrownianTree:
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
def __init__(self, x, t0, t1, seed=None, **kwargs):
t0, t1, self.sign = self.sort(t0, t1)
w0 = kwargs.get('w0', torch.zeros_like(x))
if seed is None:
seed = torch.randint(0, 2 ** 63 - 1, []).item()
self.batched = True
try:
assert len(seed) == x.shape[0]
w0 = w0[0]
except TypeError:
seed = [seed]
self.batched = False
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
@staticmethod
def sort(a, b):
return (a, b, 1) if a < b else (b, a, -1)
def __call__(self, t0, t1):
t0, t1, sign = self.sort(t0, t1)
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
return w if self.batched else w[0]
@spaces.GPU
class BrownianTreeNoiseSampler:
"""A noise sampler backed by a torchsde.BrownianTree.
Args:
x (Tensor): The tensor whose shape, device and dtype to use to generate
random samples.
sigma_min (float): The low end of the valid interval.
sigma_max (float): The high end of the valid interval.
seed (int or List[int]): The random seed. If a list of seeds is
supplied instead of a single integer, then the noise sampler will
use one BrownianTree per batch item, each with its own seed.
transform (callable): A function that maps sigma to the sampler's
internal timestep.
"""
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
self.transform = transform
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
self.tree = BatchedBrownianTree(x, t0, t1, seed)
def __call__(self, sigma, sigma_next):
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
return x[(...,) + (None,) * dims_to_append]
def to_d(x, sigma, denoised):
"""Converts a denoiser output to a Karras ODE derivative."""
return (x - denoised) / append_dims(sigma, x.ndim)
@spaces.GPU
@torch.no_grad()
def my_sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1., repaint=1):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
for u in range(repaint):
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
eps = torch.randn_like(x) * s_noise
sigma_hat = sigmas[i] * (gamma + 1)
if gamma > 0:
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
dt = sigmas[i + 1] - sigma_hat
# Euler method
x = x + d * dt
if x.isnan().any():
assert False, f"x has NaNs, i = {i}, u = {u}, repaint = {repaint}"
if u < repaint - 1:
beta = (sigmas[i + 1] / sigmas[-1]) ** 2
x = torch.sqrt(1 - beta) * x + torch.sqrt(beta) * torch.randn_like(x)
return x
def get_scalings(sigma, sigma_data=0.5):
c_skip = sigma_data ** 2 / (sigma ** 2 + sigma_data ** 2)
c_out = sigma * sigma_data / (sigma ** 2 + sigma_data ** 2) ** 0.5
c_in = 1 / (sigma ** 2 + sigma_data ** 2) ** 0.5
return c_skip, c_out, c_in
@spaces.GPU
@torch.no_grad()
def my_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None,
disable=None, eta=1., s_noise=1., noise_sampler=None,
solver_type='midpoint',
repaint=4):
"""DPM-Solver++(2M) SDE. but with repaint added"""
if solver_type not in {'heun', 'midpoint'}:
raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
old_denoised = None
h_last = None
old_x = None
for i in trange(len(sigmas) - 1, disable=disable): # time loop
for u in range(repaint):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
#print("i, u, sigmas[i], sigmas[i + 1] = ", i, u, sigmas[i], sigmas[i + 1])
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
# DPM-Solver++(2M) SDE
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
h = s - t
eta_h = eta * h
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
if old_denoised is not None:
r = h_last / h
if solver_type == 'heun':
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
elif solver_type == 'midpoint':
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
if eta:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if x.isnan().any():
assert False, f"x has NaNs, i = {i}, u = {u}, repaint = {repaint}"
if u < repaint - 1:
# RePaint: go "back" in integration via the "forward" process, by adding a little noise to x
# ...but scaled properly!
# But how to convert from original RePaint to k-diffusion? I'll try a few variants
repaint_choice = 'orig' # ['orig','var1','var2', etc...]
sigma_diff = (sigmas[i] - sigmas[i+1]).abs()
sigma_ratio = ( sigmas[i+1] / sigma_max ) # use i+1 or i?
if repaint_choice == 'orig': # attempt at original RePaint algorithm, which used betas
# if sigmas are the std devs, then betas are variances? but beta_max = 1, so how to get that? ratio?
beta = sigma_ratio**2
x = torch.sqrt(1-beta)*x + torch.sqrt(beta)*torch.randn_like(x) # this is from RePaint Paper
elif repaint_choice == 'var1': # or maybe this...? # worse than orig
x = x + sigma_diff*torch.randn_like(x)
elif repaint_choice == 'var2': # or this...? # yields NaNs
x = (1-sigma_diff)*x + sigma_diff*torch.randn_like(x)
elif repaint_choice == 'var3': # results similar to var1
x = (1.0-sigma_ratio)*x + sigmas[i+1]*torch.randn_like(x)
elif repaint_choice == 'var4': # NaNs # stealing code from elsewhere, no idea WTF I'm doing.
#Invert this: target = (input - c_skip * noised_input) / c_out, where target = model_output
x_tm1, x_t = x, old_x
# x_tm1 = ( x_0 - c_skip * noised_x0 ) / c_out
# So x_tm1*c_out = x_0 - c_skip * noised_x0
input, noise = x_tm1, torch.randn_like(x)
noised_input = input + noise * append_dims(sigma_diff, input.ndim)
c_skip, c_out, c_in = [append_dims(x, input.ndim) for x in get_scalings(sigmas[i])]
model_output = x_tm1
renoised_x = c_out * model_output + c_skip * noised_input
x = renoised_x
elif repaint_choice == 'var5':
x = torch.sqrt((1-(sigma_diff/sigma_max)**2))*x + sigma_diff*torch.randn_like(x)
# include this? guessing no.
#old_denoised = denoised
#h_last = h
old_denoised = denoised
h_last = h
old_x = x
return x
# -----from stable-audio-tools
# Define the noise schedule and sampling loop
def get_alphas_sigmas(t):
"""Returns the scaling factors for the clean image (alpha) and for the
noise (sigma), given a timestep."""
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
def alpha_sigma_to_t(alpha, sigma):
"""Returns a timestep, given the scaling factors for the clean image and for
the noise."""
return torch.atan2(sigma, alpha) / math.pi * 2
def t_to_alpha_sigma(t):
"""Returns the scaling factors for the clean image and for the noise, given
a timestep."""
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
@torch.no_grad()
def sample(model, x, steps, eta, **extra_args):
"""Draws samples from a model given starting noise. v-diffusion"""
ts = x.new_ones([x.shape[0]])
# Create the noise schedule
t = torch.linspace(1, 0, steps + 1)[:-1]
alphas, sigmas = get_alphas_sigmas(t)
# The sampling loop
for i in trange(steps):
# Get the model output (v, the predicted velocity)
with torch.cuda.amp.autocast():
v = model(x, ts * t[i], **extra_args).float()
# Predict the noise and the denoised image
pred = x * alphas[i] - v * sigmas[i]
eps = x * sigmas[i] + v * alphas[i]
# If we are not on the last timestep, compute the noisy image for the
# next timestep.
if i < steps - 1:
# If eta > 0, adjust the scaling factor for the predicted noise
# downward according to the amount of additional noise to add
ddim_sigma = eta * (sigmas[i + 1]**2 / sigmas[i]**2).sqrt() * \
(1 - alphas[i]**2 / alphas[i + 1]**2).sqrt()
adjusted_sigma = (sigmas[i + 1]**2 - ddim_sigma**2).sqrt()
# Recombine the predicted noise and predicted denoised image in the
# correct proportions for the next step
x = pred * alphas[i + 1] + eps * adjusted_sigma
# Add the correct amount of fresh noise
if eta:
x += torch.randn_like(x) * ddim_sigma
# If we are on the last timestep, output the denoised image
return pred
# Soft mask inpainting is just shrinking hard (binary) mask inpainting
# Given a float-valued soft mask (values between 0 and 1), get the binary mask for this particular step
@spaces.GPU
def get_bmask(i, steps, mask):
strength = (i+1)/(steps)
# convert to binary mask
bmask = torch.where(mask<=strength,1,0)
return bmask
@spaces.GPU
def make_cond_model_fn(model, cond_fn):
def cond_model_fn(x, sigma, **kwargs):
with torch.enable_grad():
x = x.detach().requires_grad_()
denoised = model(x, sigma, **kwargs)
cond_grad = cond_fn(x, sigma, denoised=denoised, **kwargs).detach()
cond_denoised = denoised.detach() + cond_grad * K.utils.append_dims(sigma**2, x.ndim)
return cond_denoised
return cond_model_fn
# Uses k-diffusion from https://github.com/crowsonkb/k-diffusion
# init_data is init_audio as latents (if this is latent diffusion)
# For sampling, set both init_data and mask to None
# For variations, set init_data
# For inpainting, set both init_data & mask
@spaces.GPU
def sample_k(
model_fn,
noise,
init_data=None,
mask=None,
steps=100,
sampler_type="dpmpp-2m-sde",
sigma_min=0.5,
sigma_max=50,
rho=1.0, device="cuda",
callback=None,
cond_fn=None,
model_config=None,
repaint=1,
**extra_args
):
#denoiser = K.external.VDenoiser(model_fn)
denoiser = K.Denoiser(model_fn, sigma_data=model_config['sigma_data'])
if cond_fn is not None:
denoiser = make_cond_model_fn(denoiser, cond_fn)
# Make the list of sigmas. Sigma values are scalars related to the amount of noise each denoising step has
#sigmas = K.sampling.get_sigmas_polyexponential(steps, sigma_min, sigma_max, rho, device=device)
sigmas = K.sampling.get_sigmas_karras(steps, sigma_min, sigma_max, rho=7., device=device)
print("sigmas[0] = ", sigmas[0])
# Scale the initial noise by sigma
noise = noise * sigmas[0]
wrapped_callback = callback
if mask is None and init_data is not None:
# VARIATION (no inpainting)
# set the initial latent to the init_data, and noise it with initial sigma
x = init_data + noise
elif mask is not None and init_data is not None:
# INPAINTING
bmask = get_bmask(0, steps, mask)
# initial noising
input_noised = init_data + noise
# set the initial latent to a mix of init_data and noise, based on step 0's binary mask
x = input_noised * bmask + noise * (1-bmask)
# define the inpainting callback function (Note: side effects, it mutates x)
# See https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py#L596C13-L596C105
# callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
# This is called immediately after `denoised = model(x, sigmas[i] * s_in, **extra_args)`
def inpainting_callback(args):
i = args["i"]
x = args["x"]
sigma = args["sigma"]
#denoised = args["denoised"]
# noise the init_data input with this step's appropriate amount of noise
input_noised = init_data + torch.randn_like(init_data) * sigma
# shrinking hard mask
bmask = get_bmask(i, steps, mask)
# mix input_noise with x, using binary mask
new_x = input_noised * bmask + x * (1-bmask)
# mutate x
x[:,:,:] = new_x[:,:,:]
# wrap together the inpainting callback and the user-submitted callback.
if callback is None:
wrapped_callback = inpainting_callback
else:
wrapped_callback = lambda args: (inpainting_callback(args), callback(args))
else:
# SAMPLING
# set the initial latent to noise
x = noise
print("sample_k: x.min, x.max = ", x.min(), x.max())
print(f"sample_k: key, val.dtype = ",[ (key, val.dtype if val is not None else val) for key,val in extra_args.items()])
with torch.cuda.amp.autocast():
if sampler_type == "k-heun":
return K.sampling.sample_heun(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-lms":
return K.sampling.sample_lms(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpmpp-2s-ancestral":
return K.sampling.sample_dpmpp_2s_ancestral(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpm-2":
return K.sampling.sample_dpm_2(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpm-fast":
return K.sampling.sample_dpm_fast(denoiser, x, sigma_min, sigma_max, steps, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpm-adaptive":
return K.sampling.sample_dpm_adaptive(denoiser, x, sigma_min, sigma_max, rtol=0.01, atol=0.01, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "dpmpp-2m-sde":
return K.sampling.sample_dpmpp_2m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "my-dpmpp-2m-sde":
return my_dpmpp_2m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, repaint=repaint, extra_args=extra_args)
elif sampler_type == "dpmpp-3m-sde":
return K.sampling.sample_dpmpp_3m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "my-sample-euler":
return my_sample_euler(denoiser, x, sigmas, disable=False, callback=wrapped_callback, repaint=repaint, extra_args=extra_args)
## ---- end stable-audio-tools
@spaces.GPU
def infer_mask_from_init_img(img, mask_with='white'):
"""given an image with mask areas marked, extract the mask itself
note, this works whether image is normalized on 0..1 or -1..1, but not 0..255"""
print("Inferring mask from init_img")
assert mask_with in ['blue','white']
if not torch.is_tensor(img):
img = ToTensor()(img)
mask = torch.zeros(img.shape[-2:])
if mask_with == 'white':
mask[ (img[0,:,:]==1) & (img[1,:,:]==1) & (img[2,:,:]==1)] = 1
elif mask_with == 'blue':
mask[img[2,:,:]==1] = 1 # blue
return mask*1.0
@spaces.GPU
def grow_mask(init_mask, grow_by=2):
"adds a border of grow_by pixels to the mask, by growing it grow_by times. If grow_by=0, does nothing"
new_mask = init_mask.clone()
for c in range(grow_by):
# wherever mask is bordered by a 1, set it to 1
new_mask[1:-1,1:-1] = (new_mask[1:-1,1:-1] + new_mask[0:-2,1:-1] + new_mask[2:,1:-1] + new_mask[1:-1,0:-2] + new_mask[1:-1,2:]) > 0
return new_mask
@spaces.GPU
def add_seeding(init_image, init_mask, grow_by=0, seed_scale=1.0):
"adds extra noise inside mask"
init_mask = grow_mask(init_mask, grow_by=grow_by) # make the mask bigger
if not torch.is_tensor(init_image):
init_image = ToTensor()(init_image)
init_image = init_image.clone()
# wherever mask is 1, set first set init_image to min value
init_image[:,init_mask == 1] = init_image.min()
init_image = init_image + seed_scale*torch.randn_like(init_image) * (init_mask) # add noise where mask is 1
# wherever the mask is 1, set the blue channel to -1.0, otherwise leave it alone
init_image[2,:,:] = init_image[2,:,:] * (1-init_mask) - 1.0*init_mask
return init_image
@spaces.GPU
def get_init_image_and_mask(args, device):
convert_tensor = transforms.ToTensor()
init_image = Image.open(args.init_image).convert('RGB')
init_image = convert_tensor(init_image)
#normalize image from 0..1 to -1..1
init_image = (2.0 * init_image) - 1.0
init_mask = torch.ones(init_image.shape[-2:]) # ones are where stuff will change, zeros will stay the same
inpaint_task = 'infer' # infer mask from init_image
assert inpaint_task in ['accomp','chords','melody','nucleation','notes','continue','infer']
if inpaint_task in ['melody','accomp']:
init_mask[0:70,:] = 0 # zero out a melody strip of image near top
init_mask[128+0:128+70,:] = 0 # zero out a melody strip of image along bottom row
if inpaint_task == 'melody':
init_mask = 1 - init_mask
elif inpaint_task in ['notes','chords']:
# keep chords only
#init_mask = torch.ones_like(x)
init_mask[0:CHORD_BORDER,:] = 0 # top row of 256x256
init_mask[128-CHORD_BORDER:128+CHORD_BORDER,:] = 0 # middle rows of 256x256
init_mask[-CHORD_BORDER:,:] = 0 # bottom row of 256x256
if inpaint_task == 'chords':
init_mask = 1 - init_mask # inverse: genereate chords given notes
elif inpaint_task == 'continue':
init_mask[0:128,:] = 0 # remember it's a square, so just mask out the bottom half
elif inpaint_task == 'nucleation':
# set mask to wherever the blue channel is >= 0.9
init_mask = (init_image[2,:,:] > 0.0)*1.0
# zero out init mask in top and bottom borders
init_mask[0:CHORD_BORDER,:] = 0
init_mask[-CHORD_BORDER:,:] = 0
init_mask[128-CHORD_BORDER:128+CHORD_BORDER,:] = 0
# remove all blue in init_image between the borders
init_image[2,CHORD_BORDER:128-CHORD_BORDER,:] = -1.0
init_image[2,128+CHORD_BORDER:-CHORD_BORDER,:] = -1.0
# grow the sides of the mask by one pixel:
# wherever mask is zero but is bordered by a 1, set it to 1
init_mask[1:-1,1:-1] = (init_mask[1:-1,1:-1] + init_mask[0:-2,1:-1] + init_mask[2:,1:-1] + init_mask[1:-1,0:-2] + init_mask[1:-1,2:]) > 0
#init_mask[1:-1,1:-1] = (init_mask[1:-1,1:-1] + init_mask[0:-2,1:-1] + init_mask[2:,1:-1] + init_mask[1:-1,0:-2] + init_mask[1:-1,2:]) > 0
elif inpaint_task == 'infer':
init_mask = infer_mask_from_init_img(init_image, mask_with='white')
# Also black out init_image wherever init mask is 1
init_image[:,init_mask == 1] = init_image.min()
if args.seed_scale > 0: # driving nucleation
print("Seeding nucleation, seed_scale = ", args.seed_scale)
init_image = add_seeding(init_image, init_mask, grow_by=0, seed_scale=args.seed_scale)
# remove any blue in middle of init image
print("init_image.shape = ", init_image.shape)
init_image[2,CHORD_BORDER:128-CHORD_BORDER,:] = -1.0
init_image[2,128+CHORD_BORDER:-CHORD_BORDER,:] = -1.0
# Debugging: output some images so we can see what's going on
init_mask_t = init_mask.float()*255 # convert mask to 0..255 for writing as image
# Convert to NumPy array and rearrange dimensions
init_mask_img_numpy = init_mask_t.byte().cpu().numpy()#.transpose(1, 2, 0)
init_mask_debug_img = Image.fromarray(init_mask_img_numpy)
init_mask_debug_img.save("init_mask_debug.png")
init_image_debug_img = Image.fromarray((init_image*127.5+127.5).byte().cpu().numpy().transpose(1,2,0))
init_image_debug_img.save("init_image_debug.png")
# reshape image and mask to be 4D tensors
init_image = init_image.unsqueeze(0).repeat(args.batch_size, 1, 1, 1)
init_mask = init_mask.unsqueeze(0).unsqueeze(1).repeat(args.batch_size,3,1,1).float()
return init_image.to(device), init_mask.to(device)
@spaces.GPU
def main():
global init_image, init_mask
p = argparse.ArgumentParser(description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
p.add_argument('--batch-size', type=int, default=64,
help='the batch size')
p.add_argument('--checkpoint', type=Path, required=True,
help='the checkpoint to use')
p.add_argument('--config', type=Path,
help='the model config')
p.add_argument('-n', type=int, default=64,
help='the number of images to sample')
p.add_argument('--prefix', type=str, default='out',
help='the output prefix')
p.add_argument('--repaint', type=int, default=1,
help='number of (re)paint steps')
p.add_argument('--steps', type=int, default=50,
help='the number of denoising steps')
p.add_argument('--seed-scale', type=float, default=0.0, help='strength of nucleation seeding')
p.add_argument('--init-image', type=Path, default=None, help='the initial image')
p.add_argument('--init-strength', type=float, default=1., help='strength of init image')
args = p.parse_args()
print("args =", args, flush=True)
config = K.config.load_config(args.config if args.config else args.checkpoint)
model_config = config['model']
# TODO: allow non-square input sizes
assert len(model_config['input_size']) == 2 and model_config['input_size'][0] == model_config['input_size'][1]
size = model_config['input_size']
accelerator = accelerate.Accelerator()
device = accelerator.device
print('Using device:', device, flush=True)
inner_model = K.config.make_model(config).eval().requires_grad_(False).to(device)
cse = None # ChordSeqEncoder().eval().requires_grad_(False).to(device) # add chord embedding-maker to main model
if cse is not None:
inner_model.cse = cse
try:
inner_model.load_state_dict(safetorch.load_file(args.checkpoint))
except:
#ckpt = torch.load(args.checkpoint).to(device)
ckpt = torch.load(args.checkpoint, map_location='cpu')
inner_model.load_state_dict(ckpt['model'])
accelerator.print('Parameters:', K.utils.n_params(inner_model))
model = K.Denoiser(inner_model, sigma_data=model_config['sigma_data'])
sigma_min = model_config['sigma_min']
sigma_max = model_config['sigma_max']
# SHH modified
torch.set_float32_matmul_precision('high')
#class_cond = torch.tensor([0]).to(device)
#num_classes = 10
#class_cond = torch.remainder(torch.arange(0, args.n), num_classes).int().to(device)
#extra_args = {'class_cond':class_cond}
extra_args = {}
init_image, init_mask = None, None
if args.init_image is not None:
init_image, init_mask = get_init_image_and_mask(args, device)
init_image = init_image.to(device)
init_mask = init_mask.to(device)
@torch.no_grad()
@K.utils.eval_mode(model)
def run():
global init_image, init_mask
if accelerator.is_local_main_process:
tqdm.write('Sampling...')
sigmas = K.sampling.get_sigmas_karras(args.steps, sigma_min, sigma_max, rho=7., device=device)
#ddpm_sampler = DDPM(model)
#model_fn = model
#ddpm_sampler = K.external.VDenoiser(model_fn)
@spaces.GPU
def sample_fn(n, debug=True):
x = torch.randn([n, model_config['input_channels'], size[0], size[1]], device=device) * sigma_max
print("n, sigma_max, x.min, x.max = ", n, sigma_max, x.min(), x.max())
if args.init_image is not None:
init_data, mask = get_init_image_and_mask(args, device)
init_data = args.seed_scale*x*mask + (1-mask)*init_data # extra nucleation?
if cse is not None:
chord_cond = img_batch_to_seq_emb(init_data, inner_model.cse).to(device)
else:
chord_cond = None
#print("init_data.shape, init_data.min, init_data.max = ", init_data.shape, init_data.min(), init_data.max())
else:
init_data, mask, chord_cond = None, None, None
# chord_cond doesn't work anyway so f it:
chord_cond = None
print("chord_cond = ", chord_cond)
if chord_cond is not None:
extra_args['chord_cond'] = chord_cond
# these two work:
#x_0 = K.sampling.sample_lms(model, x, sigmas, disable=not accelerator.is_local_main_process, extra_args=extra_args)
#x_0 = K.sampling.sample_dpmpp_2m_sde(model, x, sigmas, disable=not accelerator.is_local_main_process, extra_args=extra_args)
noise = torch.randn([n, model_config['input_channels'], size[0], size[1]], device=device)
sampler_type="my-dpmpp-2m-sde" # "k-lms"
#sampler_type="my-sample-euler"
#sampler_type="dpmpp-2m-sde"
#sampler_type = "dpmpp-3m-sde"
#sampler_type = "k-dpmpp-2s-ancestral"
print("dtypes:", [x.dtype if x is not None else None for x in [noise, init_data, mask, chord_cond]])
x_0 = sample_k(inner_model, noise, sampler_type=sampler_type,
init_data=init_data, mask=mask, steps=args.steps,
sigma_min=sigma_min, sigma_max=sigma_max, rho=7.,
device=device, model_config=model_config, repaint=args.repaint,
**extra_args)
#x_0 = sample_k(inner_model, noise, sampler_type="dpmpp-2m-sde", steps=100, sigma_min=0.5, sigma_max=50, rho=1., device=device, model_config=model_config, **extra_args)
print("x_0.min, x_0.max = ", x_0.min(), x_0.max())
if x_0.isnan().any():
assert False, "x_0 has NaNs"
# do gpu garbage collection before proceeding
torch.cuda.empty_cache()
return x_0
x_0 = K.evaluation.compute_features(accelerator, sample_fn, lambda x: x, args.n, args.batch_size)
if accelerator.is_main_process:
for i, out in enumerate(x_0):
filename = f'{args.prefix}_{i:05}.png'
K.utils.to_pil_image(out).save(filename)
try:
run()
except KeyboardInterrupt:
pass
if __name__ == '__main__':
main()