drscotthawley commited on
Commit
59a2caa
1 Parent(s): 5224929

adding zero gpu tags

Browse files
Files changed (1) hide show
  1. app.py +9 -6
app.py CHANGED
@@ -1,5 +1,6 @@
1
  # imports from gradio_demo.py
2
  import gradio as gr
 
3
  import numpy as np
4
  from PIL import Image
5
  import torch
@@ -24,12 +25,16 @@ from tqdm import trange, tqdm
24
  from torchvision import transforms
25
  import k_diffusion as K
26
 
 
 
 
27
 
28
  from pom.pianoroll import regroup_lines, img_file_2_midi_file, square_to_rect, rect_to_square
29
  from pom.square_to_rect import square_to_rect
30
 
31
  CT_HOME = '.'
32
 
 
33
  def infer_mask_from_init_img(img, mask_with='grey'):
34
  "note, this works whether image is normalized on 0..1 or -1..1, but not 0..255"
35
  assert mask_with in ['blue','white','grey']
@@ -52,6 +57,7 @@ def infer_mask_from_init_img(img, mask_with='grey'):
52
  return mask*1.0
53
 
54
 
 
55
  def count_notes_in_mask(img, mask):
56
  "counts the number of new notes in the mask"
57
  img_t = ToTensor()(img)
@@ -59,6 +65,7 @@ def count_notes_in_mask(img, mask):
59
  return new_notes.item()
60
 
61
 
 
62
  def grab_dense_gen(init_img,
63
  PREFIX,
64
  num_to_gen=64,
@@ -85,8 +92,9 @@ def grab_dense_gen(init_img,
85
  return dense_filename
86
 
87
 
88
-
89
  def process_image(image, repaint, busyness):
 
90
  # get image ready and execute sampler
91
  print("image = ",image)
92
  image = image['composite']
@@ -136,11 +144,6 @@ def process_image(image, repaint, busyness):
136
 
137
  return gen_image, html, audio_file
138
 
139
- # def greet(name):
140
- # return "Hello " + name + "!!"
141
-
142
- # demo = gr.Interface(fn=greet, inputs="text", outputs="text")
143
- # demo.launch()
144
 
145
 
146
  make_dict = lambda x: {'background':x, 'composite':x, 'layers':[x]}
 
1
  # imports from gradio_demo.py
2
  import gradio as gr
3
+ import spaces
4
  import numpy as np
5
  from PIL import Image
6
  import torch
 
25
  from torchvision import transforms
26
  import k_diffusion as K
27
 
28
+ zero = torch.Tensor([0]).cuda()
29
+ print("Zero Device = ",zero.device," <-- this probably says cpu") # <-- 'cpu' 🤔
30
+
31
 
32
  from pom.pianoroll import regroup_lines, img_file_2_midi_file, square_to_rect, rect_to_square
33
  from pom.square_to_rect import square_to_rect
34
 
35
  CT_HOME = '.'
36
 
37
+ @spaces.GPU
38
  def infer_mask_from_init_img(img, mask_with='grey'):
39
  "note, this works whether image is normalized on 0..1 or -1..1, but not 0..255"
40
  assert mask_with in ['blue','white','grey']
 
57
  return mask*1.0
58
 
59
 
60
+ @spaces.GPU
61
  def count_notes_in_mask(img, mask):
62
  "counts the number of new notes in the mask"
63
  img_t = ToTensor()(img)
 
65
  return new_notes.item()
66
 
67
 
68
+ @spaces.GPU
69
  def grab_dense_gen(init_img,
70
  PREFIX,
71
  num_to_gen=64,
 
92
  return dense_filename
93
 
94
 
95
+ @spaces.GPU
96
  def process_image(image, repaint, busyness):
97
+ print("Process Image: Zero Device = ",zero.device)
98
  # get image ready and execute sampler
99
  print("image = ",image)
100
  image = image['composite']
 
144
 
145
  return gen_image, html, audio_file
146
 
 
 
 
 
 
147
 
148
 
149
  make_dict = lambda x: {'background':x, 'composite':x, 'layers':[x]}