Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# @Organization : insightface.ai | |
# @Author : Jia Guo | |
# @Time : 2021-05-04 | |
# @Function : | |
from __future__ import division | |
import numpy as np | |
import cv2 | |
import onnx | |
import onnxruntime | |
from ..utils import face_align | |
__all__ = [ | |
'ArcFaceONNX', | |
] | |
class ArcFaceONNX: | |
def __init__(self, model_file=None, session=None): | |
assert model_file is not None | |
self.model_file = model_file | |
self.session = session | |
self.taskname = 'recognition' | |
find_sub = False | |
find_mul = False | |
model = onnx.load(self.model_file) | |
graph = model.graph | |
for nid, node in enumerate(graph.node[:8]): | |
#print(nid, node.name) | |
if node.name.startswith('Sub') or node.name.startswith('_minus'): | |
find_sub = True | |
if node.name.startswith('Mul') or node.name.startswith('_mul'): | |
find_mul = True | |
if find_sub and find_mul: | |
#mxnet arcface model | |
input_mean = 0.0 | |
input_std = 1.0 | |
else: | |
input_mean = 127.5 | |
input_std = 127.5 | |
self.input_mean = input_mean | |
self.input_std = input_std | |
#print('input mean and std:', self.input_mean, self.input_std) | |
if self.session is None: | |
self.session = onnxruntime.InferenceSession(self.model_file, None) | |
input_cfg = self.session.get_inputs()[0] | |
input_shape = input_cfg.shape | |
input_name = input_cfg.name | |
self.input_size = tuple(input_shape[2:4][::-1]) | |
self.input_shape = input_shape | |
outputs = self.session.get_outputs() | |
output_names = [] | |
for out in outputs: | |
output_names.append(out.name) | |
self.input_name = input_name | |
self.output_names = output_names | |
assert len(self.output_names)==1 | |
self.output_shape = outputs[0].shape | |
def prepare(self, ctx_id, **kwargs): | |
if ctx_id<0: | |
self.session.set_providers(['CPUExecutionProvider']) | |
def get(self, img, face): | |
aimg = face_align.norm_crop(img, landmark=face.kps, image_size=self.input_size[0]) | |
face.embedding = self.get_feat(aimg).flatten() | |
return face.embedding | |
def compute_sim(self, feat1, feat2): | |
from numpy.linalg import norm | |
feat1 = feat1.ravel() | |
feat2 = feat2.ravel() | |
sim = np.dot(feat1, feat2) / (norm(feat1) * norm(feat2)) | |
return sim | |
def get_feat(self, imgs): | |
if not isinstance(imgs, list): | |
imgs = [imgs] | |
input_size = self.input_size | |
blob = cv2.dnn.blobFromImages(imgs, 1.0 / self.input_std, input_size, | |
(self.input_mean, self.input_mean, self.input_mean), swapRB=True) | |
net_out = self.session.run(self.output_names, {self.input_name: blob})[0] | |
return net_out | |
def forward(self, batch_data): | |
blob = (batch_data - self.input_mean) / self.input_std | |
net_out = self.session.run(self.output_names, {self.input_name: blob})[0] | |
return net_out | |