Spaces:
Sleeping
Sleeping
# coding: utf-8 | |
import os | |
from glob import glob | |
import os.path as osp | |
import imageio | |
import numpy as np | |
import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False) | |
def load_image_rgb(image_path: str): | |
if not osp.exists(image_path): | |
raise FileNotFoundError(f"Image not found: {image_path}") | |
img = cv2.imread(image_path, cv2.IMREAD_COLOR) | |
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
def load_driving_info(driving_info): | |
driving_video_ori = [] | |
def load_images_from_directory(directory): | |
image_paths = sorted(glob(osp.join(directory, '*.png')) + glob(osp.join(directory, '*.jpg'))) | |
return [load_image_rgb(im_path) for im_path in image_paths] | |
def load_images_from_video(file_path): | |
reader = imageio.get_reader(file_path) | |
return [image for idx, image in enumerate(reader)] | |
if osp.isdir(driving_info): | |
driving_video_ori = load_images_from_directory(driving_info) | |
elif osp.isfile(driving_info): | |
driving_video_ori = load_images_from_video(driving_info) | |
return driving_video_ori | |
def contiguous(obj): | |
if not obj.flags.c_contiguous: | |
obj = obj.copy(order="C") | |
return obj | |
def resize_to_limit(img: np.ndarray, max_dim=1920, n=2): | |
""" | |
ajust the size of the image so that the maximum dimension does not exceed max_dim, and the width and the height of the image are multiples of n. | |
:param img: the image to be processed. | |
:param max_dim: the maximum dimension constraint. | |
:param n: the number that needs to be multiples of. | |
:return: the adjusted image. | |
""" | |
h, w = img.shape[:2] | |
# ajust the size of the image according to the maximum dimension | |
if max_dim > 0 and max(h, w) > max_dim: | |
if h > w: | |
new_h = max_dim | |
new_w = int(w * (max_dim / h)) | |
else: | |
new_w = max_dim | |
new_h = int(h * (max_dim / w)) | |
img = cv2.resize(img, (new_w, new_h)) | |
# ensure that the image dimensions are multiples of n | |
n = max(n, 1) | |
new_h = img.shape[0] - (img.shape[0] % n) | |
new_w = img.shape[1] - (img.shape[1] % n) | |
if new_h == 0 or new_w == 0: | |
# when the width or height is less than n, no need to process | |
return img | |
if new_h != img.shape[0] or new_w != img.shape[1]: | |
img = img[:new_h, :new_w] | |
return img | |
def load_img_online(obj, mode="bgr", **kwargs): | |
max_dim = kwargs.get("max_dim", 1920) | |
n = kwargs.get("n", 2) | |
if isinstance(obj, str): | |
if mode.lower() == "gray": | |
img = cv2.imread(obj, cv2.IMREAD_GRAYSCALE) | |
else: | |
img = cv2.imread(obj, cv2.IMREAD_COLOR) | |
else: | |
img = obj | |
# Resize image to satisfy constraints | |
img = resize_to_limit(img, max_dim=max_dim, n=n) | |
if mode.lower() == "bgr": | |
return contiguous(img) | |
elif mode.lower() == "rgb": | |
return contiguous(img[..., ::-1]) | |
else: | |
raise Exception(f"Unknown mode {mode}") | |