Spaces:
Runtime error
Runtime error
TheDavidYoungblood
commited on
Commit
·
927f45c
1
Parent(s):
51d559c
Add application file and requirements
Browse files- app.py +83 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
3 |
+
import fitz # PyMuPDF
|
4 |
+
from datasets import load_dataset
|
5 |
+
from llama_index.core import Document, VectorStoreIndex, StorageContext, load_index_from_storage, Settings
|
6 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
7 |
+
from llama_index.llms.ollama import Ollama
|
8 |
+
|
9 |
+
# Load Llama 3 model components
|
10 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
11 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom", passages_path="my_knowledge_base.faiss")
|
12 |
+
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever)
|
13 |
+
|
14 |
+
# Load the embedding model
|
15 |
+
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
16 |
+
|
17 |
+
# Create an LLM object using the deployed Llama3 Ollama instance
|
18 |
+
llm = Ollama(model="llama3:instruct", request_timeout=60.0)
|
19 |
+
|
20 |
+
# Set global settings for the LLM, chunk size, and embedding model
|
21 |
+
Settings.llm = llm
|
22 |
+
Settings.chunk_size = 512
|
23 |
+
Settings.embed_model = embed_model
|
24 |
+
|
25 |
+
# Function to extract text from PDFs
|
26 |
+
def extract_text_from_pdf(pdf_files):
|
27 |
+
texts = []
|
28 |
+
for pdf in pdf_files:
|
29 |
+
doc = fitz.open(pdf.name)
|
30 |
+
text = ""
|
31 |
+
for page in doc:
|
32 |
+
text += page.get_text()
|
33 |
+
texts.append(text)
|
34 |
+
return texts
|
35 |
+
|
36 |
+
# Function to provide answers based on questions and PDFs
|
37 |
+
def rag_answer(question, pdf_files):
|
38 |
+
texts = extract_text_from_pdf(pdf_files)
|
39 |
+
context = " ".join(texts)
|
40 |
+
inputs = tokenizer(question, return_tensors="pt")
|
41 |
+
outputs = model.generate(**inputs, context_input=context)
|
42 |
+
return tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
43 |
+
|
44 |
+
# Function to create the Vector Store Index from documents
|
45 |
+
def create_vector_store_index(documents):
|
46 |
+
index = VectorStoreIndex.from_documents(documents)
|
47 |
+
index.storage_context.persist(persist_dir="pdf_docs")
|
48 |
+
return index
|
49 |
+
|
50 |
+
# Load dataset and convert to Document format
|
51 |
+
pdf_docs = load_dataset('your-dataset-name', split='train') # Replace with your actual dataset name
|
52 |
+
documents = [Document(text=row['text'], metadata={'title': row['title']}) for index, row in pdf_docs.iterrows()]
|
53 |
+
|
54 |
+
# Create or load the vector store index
|
55 |
+
try:
|
56 |
+
storage_context = StorageContext.from_defaults(persist_dir="pdf_docs")
|
57 |
+
vector_index = load_index_from_storage(storage_context)
|
58 |
+
except:
|
59 |
+
vector_index = create_vector_store_index(documents)
|
60 |
+
|
61 |
+
# Define the query engine powered by the Vector Store
|
62 |
+
query_engine = vector_index.as_query_engine(similarity_top_k=10)
|
63 |
+
|
64 |
+
# Functions for Gradio UI
|
65 |
+
def query(text):
|
66 |
+
z = query_engine.query(text)
|
67 |
+
return z
|
68 |
+
|
69 |
+
def interface(text):
|
70 |
+
z = query(text)
|
71 |
+
response = z.response
|
72 |
+
return response
|
73 |
+
|
74 |
+
# Gradio interface
|
75 |
+
with gr.Blocks(theme=gr.themes.Glass().set(block_title_text_color="black", body_background_fill="black", input_background_fill="black", body_text_color="white")) as demo:
|
76 |
+
gr.Markdown("h1 {text-align: center;display: block;}Information Custodian Chat Agent")
|
77 |
+
with gr.Row():
|
78 |
+
output_text = gr.Textbox(lines=20)
|
79 |
+
with gr.Row():
|
80 |
+
input_text = gr.Textbox(label='Enter your query here')
|
81 |
+
input_text.submit(fn=interface, inputs=input_text, outputs=output_text)
|
82 |
+
|
83 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
gradio
|
3 |
+
faiss-cpu
|
4 |
+
datasets
|
5 |
+
PyMuPDF
|
6 |
+
llama-index-embeddings-instructor
|
7 |
+
llama-index-embeddings-huggingface
|
8 |
+
llama-index-llms-ollama
|
9 |
+
llama-index
|