OutFits_On_Me / app.py
dschandra's picture
Update app.py
488b70a verified
raw
history blame
3.34 kB
import os
import cv2
import gradio as gr
import numpy as np
from transformers import DetrForObjectDetection, DetrImageProcessor
import torch
# Function to detect face and neck for placing jewelry
def detect_face_and_neck(image):
model = DetrForObjectDetection.from_pretrained('facebook/detr-resnet-50')
processor = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50')
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
target_sizes = torch.tensor([image.shape[:2]])
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
neck_box = None
face_box = None
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
if score > 0.7:
if label == 1: # Person (this can include neck)
neck_box = box
elif label == 2: # Face
face_box = box
return face_box, neck_box
# Function to overlay jewelry on the detected regions
def place_jewelry(image, jewelry_image, position):
x, y, w, h = position
resized_jewelry = cv2.resize(jewelry_image, (int(w), int(h)))
# Ensure that the image has an alpha channel (RGBA) for blending
if resized_jewelry.shape[2] == 4:
# Blending using alpha transparency
for c in range(0, 3):
image[y:y+h, x:x+w, c] = resized_jewelry[:, :, c] * (resized_jewelry[:, :, 3] / 255.0) + image[y:y+h, x:x+w, c] * (1.0 - resized_jewelry[:, :, 3] / 255.0)
else:
image[y:y+h, x:x+w] = resized_jewelry
return image
# Try-on function for jewelry
def tryon_jewelry(person_img, jewelry_img, jewelry_type):
# Ensure images are valid
if person_img is None or jewelry_img is None:
return None
# Detect face and neck using Hugging Face model
face_box, neck_box = detect_face_and_neck(person_img)
if jewelry_type == "Necklace" and neck_box is not None:
# Apply necklace on neck region
result_img = place_jewelry(person_img, jewelry_img, neck_box)
elif jewelry_type == "Earrings" and face_box is not None:
# Assuming ears are part of the face box for simplicity
result_img = place_jewelry(person_img, jewelry_img, face_box)
else:
result_img = person_img # If no detection, return original image
return result_img
# Gradio interface setup
css = """
#col-left, #col-mid, #col-right {
margin: 0 auto;
max-width: 430px;
}
"""
with gr.Blocks(css=css) as JewelryTryon:
gr.HTML("<h1>Virtual Jewelry Try-On</h1>")
with gr.Row():
with gr.Column(elem_id="col-left"):
imgs = gr.Image(label="Person image", sources='upload', type="numpy")
with gr.Column(elem_id="col-mid"):
garm_img = gr.Image(label="Jewelry image", sources='upload', type="numpy")
with gr.Column(elem_id="col-right"):
jewelry_type = gr.Dropdown(label="Jewelry Type", choices=['Necklace', 'Earrings', 'Ring'], value="Necklace")
image_out = gr.Image(label="Result", show_share_button=False)
run_button = gr.Button(value="Run")
run_button.click(fn=tryon_jewelry, inputs=[imgs, garm_img, jewelry_type], outputs=image_out)
# Launch Gradio app
JewelryTryon.queue(api_open=False).launch(show_api=False)