File size: 7,665 Bytes
e94a434
 
 
 
146f20f
 
 
e94a434
 
 
 
 
 
 
 
 
 
 
 
715fd06
e94a434
 
 
 
 
 
 
 
 
 
715fd06
e94a434
 
 
 
 
715fd06
e94a434
715fd06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e94a434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
715fd06
 
e94a434
 
 
715fd06
 
 
 
 
 
 
 
 
 
 
 
e94a434
715fd06
 
 
 
e94a434
715fd06
 
 
e94a434
715fd06
 
 
 
 
 
 
 
 
 
 
 
e94a434
 
 
 
 
 
 
 
715fd06
e94a434
 
 
 
 
715fd06
e94a434
715fd06
 
 
 
 
e94a434
715fd06
 
 
 
e94a434
715fd06
 
 
 
 
 
 
 
e94a434
 
715fd06
e94a434
 
 
 
 
715fd06
e94a434
 
 
 
 
 
715fd06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e94a434
 
 
 
 
715fd06
e94a434
 
 
715fd06
 
 
e94a434
 
 
715fd06
 
 
e94a434
 
 
 
715fd06
 
 
 
 
 
 
 
 
 
e94a434
 
715fd06
e94a434
 
 
 
715fd06
 
e94a434
 
 
 
 
 
 
 
 
715fd06
e94a434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# coding=utf-8
# Copyright 2023 The GlotLID Authors.
# Lint as: python3


# This space is built based on AMR-KELEG/ALDi space.
# GlotLID Space


import constants
import pandas as pd
import streamlit as st
from huggingface_hub import hf_hub_download
from GlotScript import get_script_predictor
import matplotlib.pyplot as plt
import fasttext
import altair as alt
from altair import X, Y, Scale
import base64
import json

@st.cache_resource
def load_sp():
    sp = get_script_predictor()
    return sp


sp = load_sp()

def get_script(text):
    """Get the writing systems of given text.

    Args:
        text: The text to be preprocessed.

    Returns:
        The main script and list of all scripts.
    """
    res = sp(text)
    main_script = res[0] if res[0] else 'Zyyy'
    all_scripts_dict = res[2]['details']
    if all_scripts_dict:
        all_scripts = list(all_scripts_dict.keys())
    else:
        all_scripts = 'Zyyy'

    return main_script, all_scripts


@st.cache_data
def language_names(json_path):
    with open(json_path, 'r') as json_file:
        data = json.load(json_file)
    return data

label2name = language_names("assets/language_names.json")

def get_name(label):
    """Get the name of language from label"""
    iso_3 = label.split('_')[0]
    name = label2name[iso_3]
    return name


@st.cache_data
def render_svg(svg):
    """Renders the given svg string."""
    b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8")
    html = rf'<p align="center"> <img src="data:image/svg+xml;base64,{b64}"/> </p>'
    c = st.container()
    c.write(html, unsafe_allow_html=True)


@st.cache_data
def convert_df(df):
    # IMPORTANT: Cache the conversion to prevent computation on every rerun
    return df.to_csv(index=None).encode("utf-8")


@st.cache_resource
def load_GlotLID_v1(model_name, file_name):
    model_path = hf_hub_download(repo_id=model_name, filename=file_name)
    model = fasttext.load_model(model_path)
    return model

@st.cache_resource
def load_GlotLID_v2(model_name, file_name):
    model_path = hf_hub_download(repo_id=model_name, filename=file_name)
    model = fasttext.load_model(model_path)
    return model


model_1 = load_GlotLID_v1(constants.MODEL_NAME, "model_v1.bin")
model_2 = load_GlotLID_v2(constants.MODEL_NAME, "model_v2.bin")

@st.cache_resource
def plot(label, prob):

    ORANGE_COLOR = "#FF8000"
    fig, ax = plt.subplots(figsize=(8, 1))
    fig.patch.set_facecolor("none")
    ax.set_facecolor("none")

    ax.spines["left"].set_color(ORANGE_COLOR)
    ax.spines["bottom"].set_color(ORANGE_COLOR)
    ax.tick_params(axis="x", colors=ORANGE_COLOR)

    ax.spines[["right", "top"]].set_visible(False)

    ax.barh(y=[0], width=[prob], color=ORANGE_COLOR)
    ax.set_xlim(0, 1)
    ax.set_ylim(-1, 1)
    ax.set_title(f"Label: {label}, Language: {get_name(label)}", color=ORANGE_COLOR)
    ax.get_yaxis().set_visible(False)
    ax.set_xlabel("Confidence", color=ORANGE_COLOR)
    st.pyplot(fig)

def compute(sentences, version = 'v2'):
    """Computes the language probablities and labels for the given sentences.

    Args:
        sentences: A list of sentences.

    Returns:
        A list of language probablities and labels for the given sentences.
    """
    progress_text = "Computing Language..."
    model_choice = model_2 if version == 'v2' else model_1
    my_bar = st.progress(0, text=progress_text)

    probs = []
    labels = []

    for index, sent in enumerate(sentences):

        output = model_choice.predict(sent)
        
        output_label  = output[0][0].split('__')[-1]
        output_prob = max(min(output[1][0], 1), 0) 
        output_label_language = output_label.split('_')[0]

        # script control
        if version in ['v2'] and output_label_language!= 'zxx':
            main_script, all_scripts = get_script(sent)
            output_label_script = output_label.split('_')[1]

            if output_label_script not in all_scripts:
                output_label_script = main_script
                output_label = f"und_{output_label_script}"
                output_prob = 0

    
        labels = labels + [output_label]
        probs = probs + [output_prob]

        my_bar.progress(
            min((index) / len(sentences), 1),
            text=progress_text,
        )
    my_bar.empty()
    return probs, labels

st.markdown("[![Duplicate Space](https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14)](https://huggingface.co/spaces/cis-lmu/glotlid-space?duplicate=true)")

render_svg(open("assets/GlotLID_logo.svg").read())

tab1, tab2 = st.tabs(["Input a Sentence", "Upload a File"])

with tab1:
    
    # choice = st.radio(
    #     "Set granularity level",
    #     ["default", "merge", "individual"],
    #     captions=["enable both macrolanguage and its varieties (default)", "merge macrolanguage and its varieties into one label", "remove macrolanguages - only shows individual langauges"],
    # )

    version = st.radio(
        "Choose model",
        ["v1", "v2"],
        captions=["GlotLID version 1", "GlotLID version 2 (more data and languages)"],
        index = 1,
        key = 'version_tab1',
        horizontal = True
    )
    
    sent = st.text_input(
        "Sentence:", placeholder="Enter a sentence.", on_change=None
    )

    # TODO: Check if this is needed!

    clicked = st.button("Submit")

    if sent:
        sent = sent.replace('\n', '')
        
        probs, labels = compute([sent], version=version)
        prob = probs[0]
        label = labels[0]

        # plot
        plot(label, prob)
        
        print(sent)
        with open("logs.txt", "a") as f:
            f.write(sent + "\n")
with tab2:

    version = st.radio(
        "Choose model",
        ["v1", "v2"],
        captions=["GlotLID version 1", "GlotLID version 2 (more data and languages)"],
        index = 1,
        key = 'version_tab2',
        horizontal = True
    )

    file = st.file_uploader("Upload a file", type=["txt"])
    if file is not None:
        df = pd.read_csv(file, sep="¦\t¦", header=None)
        df.columns = ["Sentence"]
        df.reset_index(drop=True, inplace=True)

        # TODO: Run the model
        df['Prob'], df["Label"] = compute(df["Sentence"].tolist(), version= version)
        df['Language'] = df["Label"].apply(get_name)

        # A horizontal rule
        st.markdown("""---""")

        chart = (
            alt.Chart(df.reset_index())
            .mark_area(color="darkorange", opacity=0.5)
            .encode(
                x=X(field="index", title="Sentence Index"),
                y=Y("Prob", scale=Scale(domain=[0, 1])),
            )
        )
        st.altair_chart(chart.interactive(), use_container_width=True)

        col1, col2 = st.columns([4, 1])

        with col1:
            # Display the output
            st.table(
                df,
            )

        with col2:
            # Add a download button
            csv = convert_df(df)
            st.download_button(
                label=":file_folder: Download predictions as CSV",
                data=csv,
                file_name="GlotLID.csv",
                mime="text/csv",
            )