Spaces:
Runtime error
Runtime error
kargaranamir
commited on
Commit
•
715fd06
1
Parent(s):
f462b08
Upadte GlotLID
Browse files- README.md +4 -4
- app.py +118 -43
- assets/GlotLID_logo.svg +0 -0
- assets/language_names.json +0 -0
- constants.py +1 -1
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title: GlotLID
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.27.2
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
+
title: GlotLID Space
|
3 |
+
emoji: 📐
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: red
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.27.2
|
8 |
app_file: app.py
|
app.py
CHANGED
@@ -17,7 +17,7 @@ import fasttext
|
|
17 |
import altair as alt
|
18 |
from altair import X, Y, Scale
|
19 |
import base64
|
20 |
-
|
21 |
|
22 |
@st.cache_resource
|
23 |
def load_sp():
|
@@ -28,16 +28,39 @@ def load_sp():
|
|
28 |
sp = load_sp()
|
29 |
|
30 |
def get_script(text):
|
31 |
-
"""Get the writing
|
32 |
|
33 |
Args:
|
34 |
text: The text to be preprocessed.
|
35 |
|
36 |
Returns:
|
37 |
-
The
|
38 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
return sp(text)[0]
|
41 |
|
42 |
@st.cache_data
|
43 |
def render_svg(svg):
|
@@ -55,17 +78,45 @@ def convert_df(df):
|
|
55 |
|
56 |
|
57 |
@st.cache_resource
|
58 |
-
def
|
59 |
-
model_path = hf_hub_download(repo_id=model_name, filename=
|
60 |
model = fasttext.load_model(model_path)
|
61 |
return model
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
|
|
|
|
|
|
65 |
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
Args:
|
71 |
sentences: A list of sentences.
|
@@ -74,81 +125,105 @@ def compute(sentences):
|
|
74 |
A list of language probablities and labels for the given sentences.
|
75 |
"""
|
76 |
progress_text = "Computing Language..."
|
|
|
77 |
my_bar = st.progress(0, text=progress_text)
|
78 |
|
79 |
-
BATCH_SIZE = 1
|
80 |
probs = []
|
81 |
labels = []
|
82 |
-
preprocessed_sentences = sentences
|
83 |
|
84 |
-
for
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
#
|
89 |
-
|
90 |
-
|
|
|
91 |
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
my_bar.progress(
|
96 |
-
min((
|
97 |
text=progress_text,
|
98 |
)
|
99 |
my_bar.empty()
|
100 |
return probs, labels
|
101 |
|
|
|
102 |
|
103 |
render_svg(open("assets/GlotLID_logo.svg").read())
|
104 |
|
105 |
tab1, tab2 = st.tabs(["Input a Sentence", "Upload a File"])
|
106 |
|
107 |
with tab1:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
sent = st.text_input(
|
109 |
"Sentence:", placeholder="Enter a sentence.", on_change=None
|
110 |
)
|
111 |
|
112 |
# TODO: Check if this is needed!
|
|
|
113 |
clicked = st.button("Submit")
|
114 |
|
115 |
if sent:
|
116 |
-
|
|
|
|
|
117 |
prob = probs[0]
|
118 |
label = labels[0]
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
ax.set_facecolor("none")
|
124 |
-
|
125 |
-
ax.spines["left"].set_color(ORANGE_COLOR)
|
126 |
-
ax.spines["bottom"].set_color(ORANGE_COLOR)
|
127 |
-
ax.tick_params(axis="x", colors=ORANGE_COLOR)
|
128 |
-
|
129 |
-
ax.spines[["right", "top"]].set_visible(False)
|
130 |
-
|
131 |
-
ax.barh(y=[0], width=[prob], color=ORANGE_COLOR)
|
132 |
-
ax.set_xlim(0, 1)
|
133 |
-
ax.set_ylim(-1, 1)
|
134 |
-
ax.set_title(f"Langauge is: {label}", color=ORANGE_COLOR)
|
135 |
-
ax.get_yaxis().set_visible(False)
|
136 |
-
ax.set_xlabel("Confidence", color=ORANGE_COLOR)
|
137 |
-
st.pyplot(fig)
|
138 |
-
|
139 |
print(sent)
|
140 |
with open("logs.txt", "a") as f:
|
141 |
f.write(sent + "\n")
|
142 |
-
|
143 |
with tab2:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
file = st.file_uploader("Upload a file", type=["txt"])
|
145 |
if file is not None:
|
146 |
-
df = pd.read_csv(file, sep="
|
147 |
df.columns = ["Sentence"]
|
148 |
df.reset_index(drop=True, inplace=True)
|
149 |
|
150 |
# TODO: Run the model
|
151 |
-
df['
|
|
|
152 |
|
153 |
# A horizontal rule
|
154 |
st.markdown("""---""")
|
@@ -158,7 +233,7 @@ with tab2:
|
|
158 |
.mark_area(color="darkorange", opacity=0.5)
|
159 |
.encode(
|
160 |
x=X(field="index", title="Sentence Index"),
|
161 |
-
y=Y("
|
162 |
)
|
163 |
)
|
164 |
st.altair_chart(chart.interactive(), use_container_width=True)
|
|
|
17 |
import altair as alt
|
18 |
from altair import X, Y, Scale
|
19 |
import base64
|
20 |
+
import json
|
21 |
|
22 |
@st.cache_resource
|
23 |
def load_sp():
|
|
|
28 |
sp = load_sp()
|
29 |
|
30 |
def get_script(text):
|
31 |
+
"""Get the writing systems of given text.
|
32 |
|
33 |
Args:
|
34 |
text: The text to be preprocessed.
|
35 |
|
36 |
Returns:
|
37 |
+
The main script and list of all scripts.
|
38 |
"""
|
39 |
+
res = sp(text)
|
40 |
+
main_script = res[0] if res[0] else 'Zyyy'
|
41 |
+
all_scripts_dict = res[2]['details']
|
42 |
+
if all_scripts_dict:
|
43 |
+
all_scripts = list(all_scripts_dict.keys())
|
44 |
+
else:
|
45 |
+
all_scripts = 'Zyyy'
|
46 |
+
|
47 |
+
return main_script, all_scripts
|
48 |
+
|
49 |
+
|
50 |
+
@st.cache_data
|
51 |
+
def language_names(json_path):
|
52 |
+
with open(json_path, 'r') as json_file:
|
53 |
+
data = json.load(json_file)
|
54 |
+
return data
|
55 |
+
|
56 |
+
label2name = language_names("assets/language_names.json")
|
57 |
+
|
58 |
+
def get_name(label):
|
59 |
+
"""Get the name of language from label"""
|
60 |
+
iso_3 = label.split('_')[0]
|
61 |
+
name = label2name[iso_3]
|
62 |
+
return name
|
63 |
|
|
|
64 |
|
65 |
@st.cache_data
|
66 |
def render_svg(svg):
|
|
|
78 |
|
79 |
|
80 |
@st.cache_resource
|
81 |
+
def load_GlotLID_v1(model_name, file_name):
|
82 |
+
model_path = hf_hub_download(repo_id=model_name, filename=file_name)
|
83 |
model = fasttext.load_model(model_path)
|
84 |
return model
|
85 |
|
86 |
+
@st.cache_resource
|
87 |
+
def load_GlotLID_v2(model_name, file_name):
|
88 |
+
model_path = hf_hub_download(repo_id=model_name, filename=file_name)
|
89 |
+
model = fasttext.load_model(model_path)
|
90 |
+
return model
|
91 |
+
|
92 |
+
|
93 |
+
model_1 = load_GlotLID_v1(constants.MODEL_NAME, "model_v1.bin")
|
94 |
+
model_2 = load_GlotLID_v2(constants.MODEL_NAME, "model_v2.bin")
|
95 |
+
|
96 |
+
@st.cache_resource
|
97 |
+
def plot(label, prob):
|
98 |
|
99 |
+
ORANGE_COLOR = "#FF8000"
|
100 |
+
fig, ax = plt.subplots(figsize=(8, 1))
|
101 |
+
fig.patch.set_facecolor("none")
|
102 |
+
ax.set_facecolor("none")
|
103 |
|
104 |
+
ax.spines["left"].set_color(ORANGE_COLOR)
|
105 |
+
ax.spines["bottom"].set_color(ORANGE_COLOR)
|
106 |
+
ax.tick_params(axis="x", colors=ORANGE_COLOR)
|
107 |
|
108 |
+
ax.spines[["right", "top"]].set_visible(False)
|
109 |
+
|
110 |
+
ax.barh(y=[0], width=[prob], color=ORANGE_COLOR)
|
111 |
+
ax.set_xlim(0, 1)
|
112 |
+
ax.set_ylim(-1, 1)
|
113 |
+
ax.set_title(f"Label: {label}, Language: {get_name(label)}", color=ORANGE_COLOR)
|
114 |
+
ax.get_yaxis().set_visible(False)
|
115 |
+
ax.set_xlabel("Confidence", color=ORANGE_COLOR)
|
116 |
+
st.pyplot(fig)
|
117 |
+
|
118 |
+
def compute(sentences, version = 'v2'):
|
119 |
+
"""Computes the language probablities and labels for the given sentences.
|
120 |
|
121 |
Args:
|
122 |
sentences: A list of sentences.
|
|
|
125 |
A list of language probablities and labels for the given sentences.
|
126 |
"""
|
127 |
progress_text = "Computing Language..."
|
128 |
+
model_choice = model_2 if version == 'v2' else model_1
|
129 |
my_bar = st.progress(0, text=progress_text)
|
130 |
|
|
|
131 |
probs = []
|
132 |
labels = []
|
|
|
133 |
|
134 |
+
for index, sent in enumerate(sentences):
|
135 |
|
136 |
+
output = model_choice.predict(sent)
|
137 |
+
|
138 |
+
output_label = output[0][0].split('__')[-1]
|
139 |
+
output_prob = max(min(output[1][0], 1), 0)
|
140 |
+
output_label_language = output_label.split('_')[0]
|
141 |
|
142 |
+
# script control
|
143 |
+
if version in ['v2'] and output_label_language!= 'zxx':
|
144 |
+
main_script, all_scripts = get_script(sent)
|
145 |
+
output_label_script = output_label.split('_')[1]
|
146 |
|
147 |
+
if output_label_script not in all_scripts:
|
148 |
+
output_label_script = main_script
|
149 |
+
output_label = f"und_{output_label_script}"
|
150 |
+
output_prob = 0
|
151 |
+
|
152 |
+
|
153 |
+
labels = labels + [output_label]
|
154 |
+
probs = probs + [output_prob]
|
155 |
|
156 |
my_bar.progress(
|
157 |
+
min((index) / len(sentences), 1),
|
158 |
text=progress_text,
|
159 |
)
|
160 |
my_bar.empty()
|
161 |
return probs, labels
|
162 |
|
163 |
+
st.markdown("[![Duplicate Space](https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14)](https://huggingface.co/spaces/cis-lmu/glotlid-space?duplicate=true)")
|
164 |
|
165 |
render_svg(open("assets/GlotLID_logo.svg").read())
|
166 |
|
167 |
tab1, tab2 = st.tabs(["Input a Sentence", "Upload a File"])
|
168 |
|
169 |
with tab1:
|
170 |
+
|
171 |
+
# choice = st.radio(
|
172 |
+
# "Set granularity level",
|
173 |
+
# ["default", "merge", "individual"],
|
174 |
+
# captions=["enable both macrolanguage and its varieties (default)", "merge macrolanguage and its varieties into one label", "remove macrolanguages - only shows individual langauges"],
|
175 |
+
# )
|
176 |
+
|
177 |
+
version = st.radio(
|
178 |
+
"Choose model",
|
179 |
+
["v1", "v2"],
|
180 |
+
captions=["GlotLID version 1", "GlotLID version 2 (more data and languages)"],
|
181 |
+
index = 1,
|
182 |
+
key = 'version_tab1',
|
183 |
+
horizontal = True
|
184 |
+
)
|
185 |
+
|
186 |
sent = st.text_input(
|
187 |
"Sentence:", placeholder="Enter a sentence.", on_change=None
|
188 |
)
|
189 |
|
190 |
# TODO: Check if this is needed!
|
191 |
+
|
192 |
clicked = st.button("Submit")
|
193 |
|
194 |
if sent:
|
195 |
+
sent = sent.replace('\n', '')
|
196 |
+
|
197 |
+
probs, labels = compute([sent], version=version)
|
198 |
prob = probs[0]
|
199 |
label = labels[0]
|
200 |
|
201 |
+
# plot
|
202 |
+
plot(label, prob)
|
203 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
print(sent)
|
205 |
with open("logs.txt", "a") as f:
|
206 |
f.write(sent + "\n")
|
|
|
207 |
with tab2:
|
208 |
+
|
209 |
+
version = st.radio(
|
210 |
+
"Choose model",
|
211 |
+
["v1", "v2"],
|
212 |
+
captions=["GlotLID version 1", "GlotLID version 2 (more data and languages)"],
|
213 |
+
index = 1,
|
214 |
+
key = 'version_tab2',
|
215 |
+
horizontal = True
|
216 |
+
)
|
217 |
+
|
218 |
file = st.file_uploader("Upload a file", type=["txt"])
|
219 |
if file is not None:
|
220 |
+
df = pd.read_csv(file, sep="¦\t¦", header=None)
|
221 |
df.columns = ["Sentence"]
|
222 |
df.reset_index(drop=True, inplace=True)
|
223 |
|
224 |
# TODO: Run the model
|
225 |
+
df['Prob'], df["Label"] = compute(df["Sentence"].tolist(), version= version)
|
226 |
+
df['Language'] = df["Label"].apply(get_name)
|
227 |
|
228 |
# A horizontal rule
|
229 |
st.markdown("""---""")
|
|
|
233 |
.mark_area(color="darkorange", opacity=0.5)
|
234 |
.encode(
|
235 |
x=X(field="index", title="Sentence Index"),
|
236 |
+
y=Y("Prob", scale=Scale(domain=[0, 1])),
|
237 |
)
|
238 |
)
|
239 |
st.altair_chart(chart.interactive(), use_container_width=True)
|
assets/GlotLID_logo.svg
CHANGED
assets/language_names.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
constants.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
CHOICE_TEXT = "Input Text"
|
2 |
CHOICE_FILE = "Upload File"
|
3 |
TITLE = "GlotLID: Language Identification for Around 2000 Languages"
|
4 |
-
MODEL_NAME = "cis-lmu/
|
|
|
1 |
CHOICE_TEXT = "Input Text"
|
2 |
CHOICE_FILE = "Upload File"
|
3 |
TITLE = "GlotLID: Language Identification for Around 2000 Languages"
|
4 |
+
MODEL_NAME = "cis-lmu/glotlid"
|