Spaces:
Runtime error
Runtime error
File size: 1,962 Bytes
f481cbe 3eea93e f481cbe 3eea93e f481cbe 3eea93e f481cbe 7ad1a29 3eea93e 7ad1a29 f481cbe ed0cba3 094c28c 1cbae19 094c28c f481cbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
# Use an official Python runtime as a parent image
FROM python:3.11.1
# Set up user and paths
RUN useradd -m -u 1000 user
USER user
ENV HOME=/home/user \
PATH=/home/user/.local/bin:$PATH
# WORKDIR $HOME/app
# COPY --chown=user . $HOME/app
# Set the working directory in the container
WORKDIR $HOME/app
# Copy the current directory contents into the container at /usr/src/app
# COPY . .
COPY --chown=user . $HOME/app
# Install dependencies
# RUN poetry config virtualenvs.create false \
# && poetry install --no-interaction --no-ansi
# Streamlit must be installed separately. Potentially this will cause an issue with dependencies in the future, but it's the only way it works.
# RUN pip3 install streamlit
# Switch to root user
USER root
# Install Rust, Cargo, and Python dependencies
RUN apt-get update && \
apt-get install -y curl build-essential && \
# curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y && \
# export PATH="/root/.cargo/bin:${PATH}" && \
# pip install --upgrade pip && \
pip install -r requirements.txt
# Make a port available to the world outside this container
# The EXPOSE instruction informs Docker that the container listens on the specified network ports at runtime. Your container needs to listen to Streamlit’s (default) port 8501.
EXPOSE 8501
# The HEALTHCHECK instruction tells Docker how to test a container to check that it is still working. Your container needs to listen to Streamlit’s (default) port 8501:
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
# Set the permissions for the script file
# RUN chmod +x python 3 train_llm.py
# Change permissions of the working directory
# RUN chmod 777 /app # Gives all users read, write, and exec permissions in the app directory.
# Run the command inside your image filesystem.
CMD ["python", "train_llm.py"]
# Execute with:
# docker build -t <image_name> .
# docker run -p 8501:8501 <image_name> |