File size: 21,091 Bytes
85e3d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

import glob
import os
import json
import glob
import tiktoken
import pandas as pd
import copy
import numpy as np
import matplotlib.pyplot as plt
import re 
import time

def estimate_tokens(path):
    enc = tiktoken.encoding_for_model("gpt-4")

    prompt_tokens = 0
    completed_tokens = 0
    num_steps = 0
    step_logs = path.replace("trace.json", "../agent_log/*.log")
    
    for file in glob.glob(step_logs):
        with open(file, "r") as f:
            content = f.read()
        if "langchain" not in file:
            prompts = re.findall(r"===================prompt=====================" + r"(.*?)" + r"===================.*?response.*?=====================", content, re.DOTALL)
            prompt_tokens += sum([len(enc.encode(p)) for p in prompts])
            completed = re.findall(r"===================.*?response.*?=====================" + r"(.*?)" + r"===================tokens=====================", content, re.DOTALL)
            completed_tokens += sum([len(enc.encode(p)) for p in completed])
        else:
            prompts = re.findall(r"Prompt after formatting:\n\x1B\[32;1m\x1B\[1;3m" + r"(.*?)" + r"\x1B\[0m\n\n\x1B\[1m> Finished chain.\x1B\[0m\n\x1B\[32;1m\x1B\[1;3m", content, re.DOTALL)
            prompt_tokens += sum([len(enc.encode(p)) for p in prompts])
            completed = re.findall(r"\x1B\[0m\n\n\x1B\[1m> Finished chain.\x1B\[0m\n\x1B\[32;1m\x1B\[1;3m" + r"(.*?)" + r"Prompt after formatting:\n\x1B\[32;1m\x1B\[1;3m", content, re.DOTALL)
            completed_tokens += sum([len(enc.encode(p)) for p in completed])
            
    num_steps = len(json.load(open(path, "r"))["steps"])

    try:
        total_time = float(open(path.replace("trace.json", "overall_time.txt"), "r").read())
    except:
        total_time = 0
    tool_step_logs = path.replace("trace.json", "tool_logs/*.log")
    tool_prompt_tokens = 0
    tool_completed_tokens = 0
    for file in glob.glob(tool_step_logs):
        with open(file, "r") as f:
            content = f.read()
        if "langchain" not in file:
            prompts = re.findall(r"===================prompt=====================" + r"(.*?)" + r"===================.*?response.*?=====================", content, re.DOTALL)
            tool_prompt_tokens += sum([len(enc.encode(p)) for p in prompts])
            completed = re.findall(r"===================.*?response.*?=====================" + r"(.*?)" + r"===================tokens=====================", content, re.DOTALL)
            tool_completed_tokens += sum([len(enc.encode(p)) for p in completed])
        else:
            prompts = re.findall(r"Prompt after formatting:\n\x1B\[32;1m\x1B\[1;3m" + r"(.*?)" + r"\x1B\[0m\n\n\x1B\[1m> Finished chain.\x1B\[0m\n\x1B\[32;1m\x1B\[1;3m", content, re.DOTALL)
            tool_prompt_tokens += sum([len(enc.encode(p)) for p in prompts])
            completed = re.findall(r"\x1B\[0m\n\n\x1B\[1m> Finished chain.\x1B\[0m\n\x1B\[32;1m\x1B\[1;3m" + r"(.*?)" + r"Prompt after formatting:\n\x1B\[32;1m\x1B\[1;3m", content, re.DOTALL)
            tool_completed_tokens += sum([len(enc.encode(p)) for p in completed])
    
    return prompt_tokens, completed_tokens, tool_prompt_tokens, tool_completed_tokens, num_steps, total_time

                
    
def oom_error(path):
    log = path.replace("trace.json", "../log")
    main_log = path.replace("trace.json", "../agent_log/main_log")
    message = "CUDA out of memory"
    return (message in open(log, "r").read()) or (message in open(main_log, "r").read())
    
def mkl_error(path):
    log = path.replace("trace.json", "../log")
    main_log = path.replace("trace.json", "../agent_log/main_log")
    messages = ["rror: mkl-service + Intel(R) MKL: MKL_THREADING_LAYER=INTEL is incompatible with libgomp-a34b3233.so.1 library.", "OpenBLAS blas_thread_init:"]
    return any([m in open(log, "r").read() for m in messages]) or any([m in open(main_log, "r").read() for m in messages])

def quota_error(path):
    log = path.replace("trace.json", "error.txt")
    if os.path.exists(log):
        message = "RemoteServiceError: EXCEPTION: total quota"
        return message in open(log, "r").read()
    return False

def connection_error(path):
    log = path.replace("trace.json", "../log")
    main_log = path.replace("trace.json", "../agent_log/main_log")
    bad = ["You exceeded your current quota, please check your plan and billing details.", "Error: 'text-similarity-ada-001'", "Error: 'text-embedding-ada-001'"]
    return ("Connection aborted" in open(log, "r").read()) or (any([b in open(main_log, "r").read() for b in bad])) 


def langchain_error(path):
    if os.path.exists(os.path.join(path.replace("trace.json", ""), "error.txt")):
        return "langchain.schema.OutputParserException" in open(os.path.join(path.replace("trace.json", ""), "error.txt"), "r").read()
    return False


def error(path):
    return (os.path.exists(os.path.join(path.replace("trace.json", ""), "error.txt")) and not langchain_error(path)) or not os.path.exists(os.path.join(path.replace("trace.json", ""), "overall_time.txt")) 


def json_error(path):
    main_log = path.replace("trace.json", "../agent_log/main_log")
    return open(main_log, "r").read().count("JSONDecodeError") > 2


def langchain_final(path):
    return "Final Answer" in open(path.replace("trace.json", "../agent_log/main_log"), "r").read()

def autogpt_final(path):
    return "Goal achieved" in open(path.replace("trace.json", "../agent_log/main_log"), "r").read()
        
def long_prompt_error(path):
    main_log = path.replace("trace.json", "../agent_log/main_log")
    return "EnvError: too long input for the tool" in open(main_log, "r").read()


def get_all_runs_with_log():
    
    #TODO: fix paths to where your trace.json are
    all_runs.extend(glob.glob("/lfs/local/0/qhwang/nlp_logs/final_exp_logs*/*/*/*/env_log/trace.json"))


    df = pd.DataFrame()
    for r in all_runs:
        exp, task, run = r.split("/")[-5:-2]
        if task in os.listdir("../research_assistant_final/MLAgentBench/benchmarks"):
            new_row={"task": task, "exp": exp, "run": run, "path": r}
            df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
    


    df["error"] = df["path"].apply(error)
    df["json_error"] = df["path"].apply(json_error)
    df["long_prompt_error"] = df["path"].apply(long_prompt_error)
    df["oom_error"] = df["path"].apply(oom_error)
    df["connection_error"] = df["path"].apply(connection_error)
    df['mkl_error'] = df["path"].apply(mkl_error)
    df['quota_error'] = df["path"].apply(quota_error)
    df["langchain_error"] = df["path"].apply(langchain_error)    
    

    df_no_error = df[(((~df["error"]) & (~df["connection_error"])) | df["exp"].isin(["no_retrieval_gpt4", "full_gpt4_long"]) | (df["exp"].isin(["langchain", "langchain_long"]) & df["langchain_error"]) )& (~df["oom_error"]) & (~df["mkl_error"])]
    return df , df_no_error


lower_the_better_tasks = [ "parkinsons-disease", "feedback", "BabyLM", "llama-inference", "house-price", "vectorization"]

# TODO: add propoer label mapping and task name mapping for pretty printing in the figure
print_labels = {
    "no_retrieval_gpt4" : "GPT-4",
    "no_retrieval" : "Claude v1.0",
    "autogpt" : "AutoGPT",
    "react" : "React",
    "langchain" : "LangChain (React)",
    "sanity_check" : "Baseline"
}

print_task_labels = {
    "cifar10_training" : "cifar10",
    "imdb" : "imdb",
    "ogbn-arxiv" : "ogbn-arxiv",
    "home-data-for-ml-course" : "house-price",
    "kaggle_training_reg" : "house-price",
    "kaggle_training_class" : "spaceship-titanic",
    "amp-parkinsons-disease-progression-prediction" : "parkinsons-disease",
    "fathomnet-out-of-sample-detection" : "fathomnet",
    "feedback-prize-english-language-learning" : "feedback",
    "google-research-identify-contrails-reduce-global-warming" : "identify-contrails",
    "speed-up" : "llama-inference",
    "vectorisation" : "vectorization",
    "CLRS" : "CLRS",
    "babylm" : "BabyLM"
}


def get_improvement(df, baseline, thresh = None, prefix=""):
    if prefix:
        df[f"{prefix}increase"] = df[[f"{prefix}score", "task"]].apply(lambda x: (x[f"{prefix}score"] - baseline[(baseline["task"] == x["task"])]["final_score"].values[0])/baseline[(baseline["task"] == x["task"])]["final_score"].values[0] if x[f"{prefix}score"] is not None else None,  axis=1)
        df[f"{prefix}decrease"] = df[[f"{prefix}score", "task"]].apply(lambda x: (x[f"{prefix}score"] - baseline[(baseline["task"] == x["task"])][f"final_score"].values[0])/baseline[(baseline["task"] == x["task"])]["final_score"].values[0] if x[f"{prefix}score"] is not None else None,  axis=1)
        

    if thresh:
        return df[["task", f"{prefix}increase", f"{prefix}decrease"]].apply(lambda x: (x[f"{prefix}increase"] > thresh if x["task"] not in lower_the_better_tasks else x[f"{prefix}decrease"] < - thresh) if x[f"{prefix}increase"] is not None else False, axis=1)
    else:
        return df[["task", f"{prefix}increase", f"{prefix}decrease"]].apply(lambda x: (x[f"{prefix}increase"] if x["task"] not in lower_the_better_tasks else - x[f"{prefix}decrease"]) if x[f"{prefix}increase"] is not None else None, axis=1)


# performance
def get_all_runs_eval(print_labels = print_labels, print_task_labels = print_task_labels):

    # TODO: collect all evaluation jsons into all_results
    all_results = {}
    for f in glob.glob("/lfs/local/0/qhwang/nlp_logs/*.json"):
        all_results.update(json.load(open(f, "r")))
        

    df = pd.DataFrame()
    for n, results in all_results.items():
        if n.endswith(".json"):
            n=n.split("/env_log")[0]
            results = {n: results}
        exp, task, run = n.split("/")[-3:]
        
        exp = exp.strip()
        if exp == "react":
            continue
        task = task.strip()
        run = run.strip()
        for source_file, r in results.items():
            r_ = copy.deepcopy(r)
            if len(r["score"]) < len(r["score_steps"])+1:
                r_["score"].append(r["final_score"])
            r_["score_steps"].append(len(json.load(open(r_["path"], "r"))["steps"]))
            r_["score"] = np.array(r_["score"])
            r_["score_steps"] = np.array(r_["score_steps"])
            if exp == "no_retrieval":
                r_["score"] = r_["score"][r_["score_steps"] < 16]
                r_["score_steps"] = r_["score_steps"][r_["score_steps"] < 16]
            if exp == "langchain":
                r_["submitted_final_answer"] = langchain_final(r_["path"])
            if exp == "autogpt":
                r_["submitted_final_answer"] = autogpt_final(r_["path"])
            
            new_row={"task": task, "exp": exp, "run": run, **r_}
            df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)


    df["connection_error"] = df["path"].apply(connection_error)
    df["has_error"] = df["path"].apply(error)
    df["oom_error"] = df["path"].apply(oom_error)
    df["mkl_error"] = df["path"].apply(mkl_error)
    df["langchain_error"] = df["path"].apply(langchain_error)
    print(len(df[(df["error"] != "") | (df["connection_error"] == True)]))
    df = df[(((~df["has_error"]) & (df["connection_error"] == False)) | df["exp"].isin(["no_retrieval_gpt4", "full_gpt4_long"])| (df["exp"].isin(["langchain", "langchain_long"]) & df["langchain_error"]) ) & (~df["oom_error"]) & (~df["mkl_error"])]

    df["exp"] = df["exp"].apply(lambda x: x if not x.endswith("_long") else x[:-5])
    
    
    df = df[df["exp"].isin(list(print_labels.keys()))]
    df["exp"] = df["exp"].apply(lambda x: print_labels[x])
    df["task"] = df["task"].apply(lambda x: print_task_labels.get(x, x))

   
    df["final_submitted_score"] = df[["final_score", "submitted_final_answer"]].apply(lambda x: x["final_score"] if x["final_score"] > 0 and x["submitted_final_answer"] else None, axis=1)
    df["final_score"] = df["final_score"].apply(lambda x: x if x > 0 else None)

    
    baseline = df[df["exp"] == "Baseline"][[ "task", "exp", "final_score"]].groupby(["task", "exp"]).mean().reset_index()
    # special baseline numbers
    try:
        baseline.at[baseline[baseline["task"] == "imdb"].index.values[0], "final_score"] = 0.5
        baseline.at[baseline[baseline["task"] == "fathomnet"].index.values[0], "final_score"] = 1e-10
    except:
        baseline = pd.concat(
            [
                baseline,
                pd.DataFrame(
                    [{"task": "imdb", "exp": "Baseline", "final_score": 0.5}]
                ),
            ],
            ignore_index=True,
        )
        baseline = pd.concat(
            [
                baseline,
                pd.DataFrame(
                    [{"task": "fathomnet", "exp": "Baseline", "final_score": 1e-10}]
                ),
            ],
            ignore_index=True,
        )
    baseline = pd.concat([baseline, pd.DataFrame([{"task" : "spaceship-titanic", "exp" :"Baseline", "final_score":  0.5}])], ignore_index=True)
    
    baseline = pd.concat([baseline, pd.DataFrame([{"task" : "house-price", "exp" :"Baseline", "final_score": 1e10}])], ignore_index=True)
    baseline = pd.concat([baseline, pd.DataFrame([{"task" : "ogbn-arxiv", "exp" :"Baseline", "final_score": 0.3134}])], ignore_index=True)
    baseline = pd.concat([baseline, pd.DataFrame([{"task" : "vectorization", "exp" :"Baseline", "final_score": 6.1742}])], ignore_index=True)
    return df, baseline
 
def get_all_runs_results(df = None, baseline = None, print_labels = print_labels, print_task_labels = print_task_labels):
    if df is None or baseline is None:
        df, baseline = get_all_runs_eval(print_labels = print_labels, print_task_labels = print_task_labels)
    
    df[df["final_score"] > -1]["task"].unique()

    
    df = df[df["task"].isin(baseline["task"].unique())]

    
    df["max_score"] = df["score"].apply(lambda x: max(list(filter(lambda a: a > 0, x))) if len(list(filter(lambda a: a > 0, x))) > 0 else None)
    df["min_score"] = df["score"].apply(lambda x: min(list(filter(lambda a: a > 0, x))) if len(list(filter(lambda a: a > 0, x))) > 0 else None)


    df["increase"] = df[["max_score", "task"]].apply(lambda x: (x["max_score"] - baseline[(baseline["task"] == x["task"])]["final_score"].values[0])/baseline[(baseline["task"] == x["task"])]["final_score"].values[0] if x["max_score"] is not None else None,  axis=1)
    df["decrease"] = df[["min_score", "task"]].apply(lambda x: (x["min_score"] - baseline[(baseline["task"] == x["task"])]["final_score"].values[0])/baseline[(baseline["task"] == x["task"])]["final_score"].values[0] if x["min_score"] is not None else None,  axis=1)


    print(time.time())
    df["improve"] = get_improvement(df, baseline)
    df["improve_5"] = get_improvement(df, baseline, 0.05)
    df["improve_10"] = get_improvement(df, baseline, 0.1)
    df["improve_15"] = get_improvement(df, baseline, 0.15)
    df["improve_20"] = get_improvement(df, baseline, 0.2)
    df["improve_30"] = get_improvement(df, baseline, 0.3)

    for prefix in ["final_"]:

        df[f"{prefix}improve"] = get_improvement(df, baseline, None, prefix)
        df[f"{prefix}improve_5"] = get_improvement(df, baseline, 0.05, prefix)
        df[f"{prefix}improve_10"] = get_improvement(df, baseline, 0.1, prefix)
        df[f"{prefix}improve_15"] = get_improvement(df, baseline, 0.15, prefix)
        df[f"{prefix}improve_20"] = get_improvement(df, baseline, 0.2, prefix)
        df[f"{prefix}improve_30"] = get_improvement(df, baseline, 0.3, prefix)
    
    print(time.time())
    
    # uncomment these to count tokens
    # df[["prompt_tokens", "completed_tokens", "tool_prompt_tokens", "tool_completed_tokens", "num_steps", "total_time"]]  = df.apply((lambda row: estimate_tokens(row["path"])), axis=1, result_type="expand")

    # df['total_tokens'] = df["prompt_tokens"] + df["completed_tokens"] + df["tool_prompt_tokens"] + df["tool_completed_tokens"]

    print(time.time())
    return df

import seaborn as sns
from pandas.api.types import CategoricalDtype

colors = {
    "GPT-4" : "#d62728",
    "Claude v1.0" : "#2ca02c",
    "AutoGPT"   : "#9467bd",
    "React" : "#8c564b",
    "LangChain (React)" : "#e377c2",
    "Baseline" : "#7f7f7f"
}


def get_tradeoff_plot(df):
    def sample_and_mean(group):
        if "GPT-4" in group["exp"].values[0]:
            sample = group.sample(n=min(len(group), 8), random_state=1)
        else:
            sample = group.sample(n=min(len(group), 25), random_state=1)
        return sample.groupby(["task", "exp"]).mean().reset_index().drop(columns=["task", "exp"])

    grouped_df = df[["task", "exp", "final_improve_10", "total_tokens"]].groupby(["task", "exp"]).apply(sample_and_mean).round(4).reset_index()

    x = grouped_df[["total_tokens","exp"]].groupby([ "exp"]).mean().values.flatten().tolist()
    y = grouped_df[["final_improve_10","exp"]].groupby([ "exp"]).mean().values.flatten().tolist()
    labels = ["AutoGPT", "Baseline", "Claude v1.0", "GPT-4", "LangChain (React)"]

    plt.figure()
    plt.scatter(x,y)

    for i in range(len(x)):
        plt.annotate(labels[i], # this is the text
                    (x[i], y[i]), # these are the coordinates to position the label
                    textcoords="offset points", # how to position the text
                    xytext=(0,10), # distance from text to points (x,y)
                    ha='center') # horizontal alignment can be left, right or center
    plt.xlim((-30000, 200000))
    plt.ylim((0, 0.3)) 

    # plt.show()
    plt.xlabel("Average Nsumber of Tokens Spent")
    plt.ylabel("Average Success Rate")
    plt.savefig("plots/tradeoff.pdf")
    
   

def get_plot(df, column_name = "improve_5", titile = "Improvement of 5%", save_name = "improve_5", plot_tokens = False, plot_time = False):
    def sample_and_mean(group):
        if "GPT-4" in group["exp"].values[0]:
            sample = group.sample(n=min(len(group), 8), random_state=1)
        else:
            sample = group.sample(n=min(len(group), 25), random_state=1)
        return sample.groupby(["task", "exp"]).mean().reset_index().drop(columns=["task", "exp"])

    grouped_df = df[["task", "exp", column_name]].groupby(["task", "exp"]).apply(sample_and_mean).round(4).reset_index()
    

    grouped_df.fillna(0, inplace=True)
    if plot_time:
        grouped_df[column_name] = grouped_df[column_name] / 60
    elif not plot_tokens:
        grouped_df[column_name] = grouped_df[column_name] * 100
    # Define the order
    task_order = list(print_task_labels.values())
    task_order.remove("house-price")    
    exp_order = ["GPT-4", "Claude v1.0", "AutoGPT", "LangChain (React)", "Baseline"]
    cat_type = CategoricalDtype(categories=task_order, ordered=True)
    grouped_df['task'] = grouped_df['task'].astype(cat_type)
    cat_type = CategoricalDtype(categories=exp_order, ordered=True)
    grouped_df['exp'] = grouped_df['exp'].astype(cat_type)


    plt.figure(figsize=(10,6))
    palette = [colors[x] for x in exp_order]
    barplot = sns.barplot(x='task', y=column_name, hue='exp', data=grouped_df, palette=palette, ci=95)
    
    
    print(titile)

    # Get the current x-tick labels
    labels = [item.get_text() for item in barplot.get_xticklabels()]

    # Modify the labels
    new_labels =  labels # [ l.split("_")[0].split("-")[0]  for l in labels]

    # Set the new labels
    plt.xticks(range(len(labels)), new_labels, rotation=30)
    plt.ylim(plt.ylim()[0], plt.ylim()[1] + (plt.ylim()[1]-plt.ylim()[0]) * 0.1)

    leg = barplot.get_legend()
    leg.set_title(None)
    for t in leg.texts:
        t.set_text(t.get_text().replace("Year=", ""))
    plt.legend(loc='upper center', fancybox=True, shadow=True, ncol=4)
    plt.xlabel("Task")
    if plot_tokens:
        plt.ylabel("Tokens")
    elif plot_time:
        plt.ylabel("Time (minutes)")
    else:
        plt.ylabel("Percentage")

    
    plt.savefig(f"plots/{save_name}.pdf", bbox_inches='tight')
    plt.show()


if __name__ == "__main__":
    df = get_all_runs_results()

    get_plot(df, "improve_5", "Percentage of runs that improve objective by over 5% at any point", "improve_5")
    
    get_plot(df, "improve_10", "Percentage of runs that improve objective by over 10% at any point", "improve_10")

    get_plot(df, "final_improve_5", "Percentage of runs that improves objective by over 5% at the end", "final_improve_5")
    
    get_plot(df, "final_improve_10", "Percentage of runs that improves objective by over 10% at the end", "final_improve_10")

    get_plot(df, "final_improve_30", "Percentage of runs that improves objective by over 30% at the end", "final_improve_30")

    get_plot(df, "final_improve", "Average improvement in objective among runs that made a submission at the end.", "final_improve")

    get_plot(df[df["submitted_final_answer"]], "final_improve", "Average improvement in objective among runs that made a final submission.", "final_improve_submitted")
    
    get_plot(df, "total_tokens", "", "total_tokens", plot_tokens= True)
    
    get_plot(df, "total_time", "", "total_time",plot_time=True)