Spaces:
Runtime error
Runtime error
File size: 12,634 Bytes
85e3d20 305c7c5 85e3d20 305c7c5 87f5b95 305c7c5 87f5b95 305c7c5 85e3d20 305c7c5 fd63d9f 85e3d20 305c7c5 85e3d20 fd63d9f 85e3d20 fd63d9f 85e3d20 87f5b95 85e3d20 de7cb37 fd63d9f 85e3d20 305c7c5 85e3d20 fd63d9f 85e3d20 fd63d9f 85e3d20 305c7c5 87f5b95 305c7c5 87f5b95 85e3d20 87f5b95 305c7c5 85e3d20 fd63d9f 305c7c5 85e3d20 305c7c5 85e3d20 fd63d9f 85e3d20 305c7c5 85e3d20 fd63d9f 85e3d20 87f5b95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import gradio as gr
from pathlib import Path
from reactagent.environment import Environment
from reactagent.agents.agent_research import ResearchAgent
from reactagent.runner import create_parser
from reactagent import llm
from reactagent.users.user import User
import json
# Global variables to store session state
env = None
agent = None
state_extract = False
state_generate = False
state_agent = False
state_complete = False
index_ex = "1"
example_text = [
"Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
"Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
]
# Load example JSON file
def load_example_data():
with open("example/example_data.json", "r") as json_file:
return json.load(json_file)
example_data = load_example_data()
with open("example/ex1_init.py", "r") as f:
predefined_code = f.read()
with open("example/ex1_final.py", "r") as f:
final_code = f.read()
# Function to handle the selection of an example and populate the respective fields
def load_example(example_id):
global index_ex
index_ex = str(example_id)
example = example_data[index_ex]
paper_text = 'Title:\t' + example['title'] + '\nAbstract:\t' + example['abstract']
return paper_text
example_text = [load_example(1), load_example(2)]
# Function to handle example clicks
def load_example_and_set_index(paper_text_input):
global index_ex
index_ex = str(example_text.index(paper_text_input) + 1)
paper_text = load_example(index_ex)
return paper_text, "", "", "", "", "", ""
########## Phase 1 ##############
def extract_research_elements(paper_text):
global state_extract
state_extract = True
global index_ex
example = example_data[index_ex]
tasks = example['research_tasks']
gaps = example['research_gaps']
keywords = example['keywords']
recent_works = "\n".join(example['recent_works'])
return tasks, gaps, keywords, recent_works
# Step 2: Generate Research Hypothesis and Experiment Plan
def generate_and_store(tasks, gaps, keywords, recent_works):
if (not state_extract):
return "", "", "", ""
global state_generate
state_generate = True
global index_ex
hypothesis = example_data[index_ex]['hypothesis']
experiment_plan = example_data[index_ex]['experiment_plan']
return hypothesis, experiment_plan, hypothesis, experiment_plan
########## Phase 2 & 3 ##############
def start_experiment_agent(hypothesis, plan):
if (not state_extract or not state_generate):
return "", ""
global state_agent
state_agent = True
predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
return predefined_code, predefined_action_log
def submit_feedback(user_feedback, history, previous_response):
if (not state_extract or not state_generate or not state_agent):
return "", "", ""
global step_index
global state_complete
step_index += 1
msg = history
if step_index < len(process_steps):
msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
response_info = process_steps[step_index]
response = info_to_message(response_info) # Convert dictionary to formatted string
response += "Please provide feedback based on the history, response entries, and observation, and questions: "
step_index += 1
msg += response
else:
state_complete = True
response = "Agent Finished."
return msg, response, predefined_code if state_complete else final_code
def load_phase_2_inputs(hypothesis, plan):
return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
predefined_action_log = """
[Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
[Action]: Inspect Script (train.py)
Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
Objective: Understand the training script, including data processing, [...]
[Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
[Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.
"""
predefined_observation = """
Epoch [1/10],
Train MSE: 0.543,
Test MSE: 0.688
Epoch [2/10],
Train MSE: 0.242,
Test MSE: 0.493
"""
# Initialize the global step_index and history
process_steps = [
{
"Action": "Inspect Script Lines (train.py)",
"Observation": (
"The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
"Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
"to calculate RMSE for different dimensions. Placeholder functions train_model and "
"predict exist without implementations."
),
},
{
"Action": "Execute Script (train.py)",
"Observation": (
"The script executed successfully. Generated embeddings using the BERT model. Completed "
"the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
),
},
{
"Action": "Edit Script (train.py)",
"Observation": (
"Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
"The edited train.py now has clearly defined functions"
"for data loading (load_data), model definition (build_model), "
"training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
),
},
{
"Action": "Retrieve Model",
"Observation": "CNN and BiLSTM retrieved.",
},
{
"Action": "Execute Script (train.py)",
"Observation": (
"The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
"the decrease in loss indicates improved model performance."
)
},
{
"Action": "Evaluation",
"Observation": predefined_observation,
}
]
def info_to_message(info):
msg = ""
for k, v in info.items():
if isinstance(v, dict):
tempv = v
v = ""
for k2, v2 in tempv.items():
v += f"{k2}:\n {v2}\n"
v = User.indent_text(v, 2)
msg += '-' * 64
msg += '\n'
msg += f"{k}:\n{v}\n"
return msg
def handle_example_click(example_index):
global index_ex
index_ex = example_index
return load_example(index_ex) # Simply return the text to display it in the textbox
# Gradio Interface
with gr.Blocks() as app:
gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents")
gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas.It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
# Use state variables to store generated hypothesis and experiment plan
hypothesis_state = gr.State("")
experiment_plan_state = gr.State("")
########## Phase 1: Research Idea Generation Tab ##############
with gr.Tab("Phase 1: Research Idea Generation"):
gr.Markdown("### Extract Research Elements and Generate Research Ideas")
with gr.Row():
with gr.Column():
paper_text_input = gr.Textbox(value=load_example(1), lines=10, label="Research Paper Text")
extract_button = gr.Button("Extract Research Elements")
with gr.Row():
tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
with gr.Column():
with gr.Row(): # Move the button to the top right
generate_button = gr.Button("Generate Research Hypothesis & Experiment Plan")
with gr.Group():
gr.Markdown("### Research Idea")
with gr.Row():
hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
# with gr.Row():
# example_1_button = gr.Button("Load Example 1: " + example_data["1"]["title"])
# example_2_button = gr.Button("Load Example 2: " + example_data["2"]["title"])
# Example buttons
gr.Examples(
examples=example_text,
inputs=[paper_text_input],
outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
fn=load_example_and_set_index,
run_on_click = True,
label="Click an example to load"
)
# # Pre-step: load example
# example_1_button.click(
# fn=lambda: load_example(1), x
# outputs=[paper_text_input]
# )
# example_2_button.click(
# fn=lambda: load_example(2),
# outputs=[paper_text_input]
# )
# Step 1: Extract Research Elements
extract_button.click(
fn=extract_research_elements,
inputs=paper_text_input,
outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
)
generate_button.click(
fn=generate_and_store,
inputs=[tasks_output, gaps_output, keywords_output, recent_works_output],
outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
)
########## Phase 2 & 3: Experiment implementation and execution ##############
with gr.Tab("Phase 2 & Phase 3: Experiment implementation and execution"):
gr.Markdown("### Interact with the ExperimentAgent")
with gr.Row():
with gr.Column():
idea_input = gr.Textbox(label="Research Hypothesis", lines=30, interactive=False)
plan_input = gr.Textbox(label="Experiment Plan", lines=30, interactive=False)
with gr.Column():
start_exp_agnet = gr.Button("Start ExperimentAgent", elem_classes=["agent-btn"])
with gr.Group():
gr.Markdown("### Implementation + Execution Log")
log = gr.Textbox(label="Execution Log", lines=20, interactive=False)
code_display = gr.Code(label="Implementation", language="python", interactive=False)
with gr.Column():
response = gr.Textbox(label="ExperimentAgent Response", lines=30, interactive=False)
feedback = gr.Textbox(placeholder="N/A", label="User Feedback", lines=3, interactive=True)
submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
hypothesis_state.change(
fn=load_phase_2_inputs,
inputs=[hypothesis_state, experiment_plan_state],
outputs=[idea_input, plan_input, code_display]
)
# Start research agent
start_exp_agnet.click(
fn=start_experiment_agent,
inputs=[hypothesis_state, experiment_plan_state],
outputs=[code_display, log]
)
submit_button.click(
fn=submit_feedback,
inputs=[feedback, log, response],
outputs=[log, response, code_display]
)
if __name__ == "__main__":
step_index = 0
app.launch(share=True)
|