File size: 12,634 Bytes
85e3d20
 
 
 
 
 
 
305c7c5
85e3d20
 
 
 
 
305c7c5
 
 
 
 
 
87f5b95
 
 
 
305c7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87f5b95
 
 
 
 
 
 
 
 
 
 
 
305c7c5
 
85e3d20
305c7c5
 
fd63d9f
 
 
 
 
 
 
85e3d20
305c7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85e3d20
 
 
 
 
 
 
 
 
 
 
fd63d9f
 
 
 
 
 
 
 
85e3d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd63d9f
 
 
 
 
 
 
 
 
 
 
 
 
85e3d20
 
87f5b95
 
 
 
85e3d20
 
 
de7cb37
 
fd63d9f
85e3d20
 
 
 
 
305c7c5
85e3d20
 
 
 
 
fd63d9f
85e3d20
 
fd63d9f
 
 
 
85e3d20
 
 
 
 
 
305c7c5
 
 
87f5b95
 
 
 
 
 
 
 
 
 
 
305c7c5
87f5b95
 
 
 
 
 
 
85e3d20
87f5b95
 
 
 
305c7c5
85e3d20
 
 
 
 
 
 
 
 
 
 
 
 
fd63d9f
305c7c5
 
 
85e3d20
 
 
 
 
 
 
 
305c7c5
85e3d20
 
 
 
 
 
fd63d9f
 
85e3d20
 
 
 
 
 
 
 
305c7c5
 
 
85e3d20
 
 
fd63d9f
85e3d20
 
 
 
 
 
 
 
87f5b95
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import gradio as gr
from pathlib import Path
from reactagent.environment import Environment
from reactagent.agents.agent_research import ResearchAgent
from reactagent.runner import create_parser
from reactagent import llm
from reactagent.users.user import User
import json


# Global variables to store session state
env = None
agent = None
state_extract = False
state_generate = False
state_agent = False
state_complete = False
index_ex = "1"

example_text = [
    "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
    "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
]

# Load example JSON file
def load_example_data():
    with open("example/example_data.json", "r") as json_file:
        return json.load(json_file)

example_data = load_example_data()

with open("example/ex1_init.py", "r") as f:
    predefined_code = f.read()

with open("example/ex1_final.py", "r") as f:
    final_code = f.read()

# Function to handle the selection of an example and populate the respective fields
def load_example(example_id):
    global index_ex 
    index_ex = str(example_id)
    example = example_data[index_ex]
    paper_text = 'Title:\t' +  example['title'] + '\nAbstract:\t' + example['abstract']
    return paper_text

example_text = [load_example(1), load_example(2)]

# Function to handle example clicks
def load_example_and_set_index(paper_text_input):
    global index_ex
    index_ex = str(example_text.index(paper_text_input) + 1)
    paper_text =  load_example(index_ex)

    return paper_text,  "", "", "", "", "", ""



########## Phase 1 ##############

def extract_research_elements(paper_text):
    global state_extract 
    state_extract = True
    global index_ex
    example = example_data[index_ex]
    tasks = example['research_tasks']
    gaps = example['research_gaps']
    keywords = example['keywords']
    recent_works = "\n".join(example['recent_works'])
    return tasks, gaps, keywords, recent_works


# Step 2: Generate Research Hypothesis and Experiment Plan
def generate_and_store(tasks, gaps, keywords, recent_works):
    if (not state_extract):
        return "", "", "", ""
    global state_generate 
    state_generate = True
    global index_ex
    hypothesis = example_data[index_ex]['hypothesis']
    experiment_plan = example_data[index_ex]['experiment_plan']
    return hypothesis, experiment_plan, hypothesis, experiment_plan

##########  Phase 2 & 3  ##############
def start_experiment_agent(hypothesis, plan):
    if (not state_extract or not  state_generate):
        return "", ""
    global state_agent 
    state_agent = True
    predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
    return predefined_code, predefined_action_log

def submit_feedback(user_feedback, history, previous_response):
    if (not state_extract or not  state_generate or not state_agent):
        return "", "", ""
    global step_index
    global state_complete
    step_index += 1
    msg = history
    if step_index < len(process_steps):
        msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
        response_info = process_steps[step_index]
        response = info_to_message(response_info)  # Convert dictionary to formatted string
        response += "Please provide feedback based on the history, response entries, and observation, and questions: "
        step_index += 1
        msg += response
    else:
        state_complete = True
        response = "Agent Finished."
        

    return msg, response, predefined_code if state_complete else final_code

def load_phase_2_inputs(hypothesis, plan):
    return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."



predefined_action_log = """
[Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
[Action]: Inspect Script (train.py)
Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
Objective: Understand the training script, including data processing, [...]
[Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
[Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.
"""


predefined_observation = """
Epoch [1/10],
Train MSE: 0.543,
Test MSE: 0.688
Epoch [2/10],
Train MSE: 0.242,
Test MSE: 0.493
"""

# Initialize the global step_index and history
process_steps = [
    {
        "Action": "Inspect Script Lines (train.py)",
        "Observation": (
            "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
            "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
            "to calculate RMSE for different dimensions. Placeholder functions train_model and "
            "predict exist without implementations."
        ),
    },
    {
        "Action": "Execute Script (train.py)",
        "Observation": (
            "The script executed successfully. Generated embeddings using the BERT model. Completed "
            "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
        ),
    },
    {
        "Action": "Edit Script (train.py)",
        "Observation": (
            "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
            "The edited train.py now has clearly defined functions"
            "for data loading (load_data), model definition (build_model), "
            "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
        ),
    },
    {
        "Action": "Retrieve Model",
        "Observation": "CNN and BiLSTM retrieved.",
    },
    {
        "Action": "Execute Script (train.py)",
        "Observation": (
            "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
            "the decrease in loss indicates improved model performance."
        )
    },
    {
        "Action": "Evaluation",
        "Observation": predefined_observation,
    }
]
def info_to_message(info):
    msg = ""
    for k, v in info.items():
        if isinstance(v, dict):
            tempv = v
            v = ""
            for k2, v2 in tempv.items():
                v += f"{k2}:\n  {v2}\n"
        v = User.indent_text(v, 2)
        msg += '-' * 64
        msg += '\n'
        msg += f"{k}:\n{v}\n"
    return msg


def handle_example_click(example_index):
    global index_ex
    index_ex = example_index
    return load_example(index_ex)  # Simply return the text to display it in the textbox

# Gradio Interface
with gr.Blocks() as app:
    gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents")
    gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas.It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")


    # Use state variables to store generated hypothesis and experiment plan
    hypothesis_state = gr.State("")
    experiment_plan_state = gr.State("")

    ########## Phase 1:  Research Idea Generation Tab ##############
    with gr.Tab("Phase 1: Research Idea Generation"):
        gr.Markdown("### Extract Research Elements and Generate Research Ideas")
        
        with gr.Row():
            with gr.Column():
                paper_text_input = gr.Textbox(value=load_example(1), lines=10, label="Research Paper Text")
                extract_button = gr.Button("Extract Research Elements")
                with gr.Row():
                    tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
                    gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
                    keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
                    recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
            with gr.Column():
                with gr.Row():  # Move the button to the top right
                    generate_button = gr.Button("Generate Research Hypothesis & Experiment Plan")
                with gr.Group():
                    gr.Markdown("### Research Idea")
                    with gr.Row():
                        hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
                        experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)

        # with gr.Row():
        #     example_1_button = gr.Button("Load Example 1: " + example_data["1"]["title"])
        #     example_2_button = gr.Button("Load Example 2: " + example_data["2"]["title"])
        # Example buttons
        gr.Examples(
            examples=example_text,
            inputs=[paper_text_input],
            outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
            fn=load_example_and_set_index,
            run_on_click = True,
            label="Click an example to load"
        )

       
        # # Pre-step: load example         
        # example_1_button.click(
        #     fn=lambda: load_example(1), x
        #     outputs=[paper_text_input]
        # )
        
        # example_2_button.click(
        #     fn=lambda: load_example(2), 
        #     outputs=[paper_text_input]
        # )
    
        # Step 1: Extract Research Elements
        extract_button.click(
            fn=extract_research_elements, 
            inputs=paper_text_input, 
            outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
        )

        generate_button.click(
            fn=generate_and_store, 
            inputs=[tasks_output, gaps_output, keywords_output, recent_works_output], 
            outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
        )



    ########## Phase 2 & 3:  Experiment implementation and execution ##############
    with gr.Tab("Phase 2 & Phase 3: Experiment implementation and execution"):
        gr.Markdown("### Interact with the ExperimentAgent")

        with gr.Row():
            with gr.Column():
                idea_input = gr.Textbox(label="Research Hypothesis", lines=30, interactive=False)
                plan_input = gr.Textbox(label="Experiment Plan", lines=30, interactive=False)
        
            with gr.Column():
                start_exp_agnet = gr.Button("Start ExperimentAgent", elem_classes=["agent-btn"])
                with gr.Group():
                    gr.Markdown("### Implementation + Execution Log")    
                    log = gr.Textbox(label="Execution Log", lines=20, interactive=False)
                    code_display = gr.Code(label="Implementation", language="python", interactive=False)

            with gr.Column():
                response = gr.Textbox(label="ExperimentAgent Response", lines=30, interactive=False)
                feedback = gr.Textbox(placeholder="N/A", label="User Feedback", lines=3, interactive=True)
                submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
        
        hypothesis_state.change(
            fn=load_phase_2_inputs, 
            inputs=[hypothesis_state, experiment_plan_state], 
            outputs=[idea_input, plan_input, code_display]
        )
        
        # Start research agent
        start_exp_agnet.click(
            fn=start_experiment_agent, 
            inputs=[hypothesis_state, experiment_plan_state], 
            outputs=[code_display, log]
        )
        
        submit_button.click(
            fn=submit_feedback,
            inputs=[feedback, log, response],
            outputs=[log, response, code_display]
        )

if __name__ == "__main__":
    step_index = 0
    app.launch(share=True)