File size: 8,572 Bytes
85e3d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=text-generation
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.

import logging
import math
import os
# disable logging until training starts
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' 
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional

import datasets
import evaluate
import torch
from datasets import load_dataset

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_CAUSAL_LM_MAPPING,
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
    is_torch_tpu_available,
    set_seed,
)
from transformers.testing_utils import CaptureLogger
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version

from transformers import AutoModel, AutoTokenizer
from datasets import load_dataset
from transformers.testing_utils import CaptureLogger

from itertools import chain

logger = logging.getLogger(__name__)


def get_score(submission_folder = "../env"):
    training_args = TrainingArguments("test_trainer")
    training_args.report_to = []
    raw_datasets = load_dataset(submission_folder + "/babyLM_for_hf.py", "babyLM-10M", split="test")
    model = AutoModelForCausalLM.from_pretrained(submission_folder + "/output/")
    tokenizer = AutoTokenizer.from_pretrained(submission_folder + "/output/")

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    column_names = list(raw_datasets.features)
    text_column_name = "text" if "text" in column_names else column_names[0]

    # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
    tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")

    def tokenize_function(examples):
        with CaptureLogger(tok_logger) as cl:
            output = tokenizer(examples[text_column_name])
        # clm input could be much much longer than block_size
        if "Token indices sequence length is longer than the" in cl.out:
            tok_logger.warning(
                "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
                " before being passed to the model."
            )
        return output

    with training_args.main_process_first(desc="dataset map tokenization"):
    # if not data_args.streaming:
    #     tokenized_datasets = raw_datasets.map(
    #         tokenize_function,
    #         batched=True,
    #         num_proc=data_args.preprocessing_num_workers,
    #         remove_columns=column_names,
    #         load_from_cache_file=not data_args.overwrite_cache,
    #         desc="Running tokenizer on dataset",
    #     )
    # else:
        tokenized_datasets = raw_datasets.map(
            tokenize_function,
            batched=True,
            remove_columns=column_names,
        )

    if True:
        block_size = tokenizer.model_max_length
        if block_size > 1024:
            logger.warning(
                "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
                " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
                " override this default with `--block_size xxx`."
            )
            block_size = 1024
    else:
        if data_args.block_size > tokenizer.model_max_length:
            logger.warning(
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
            )
        block_size = min(data_args.block_size, tokenizer.model_max_length)

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
        concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, and if the total_length < block_size  we exclude this batch and return an empty dict.
        # We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
        total_length = (total_length // block_size) * block_size
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map

    with training_args.main_process_first(desc="grouping texts together"):
        # if not data_args.streaming:
        #     lm_datasets = tokenized_datasets.map(
        #         group_texts,
        #         batched=True,
        #         num_proc=data_args.preprocessing_num_workers,
        #         load_from_cache_file=not data_args.overwrite_cache,
        #         desc=f"Grouping texts in chunks of {block_size}",
        #     )
        # else:
        lm_datasets = tokenized_datasets.map(
            group_texts,
            batched=True,
        )
    eval_dataset = lm_datasets
       
    def preprocess_logits_for_metrics(logits, labels):
        if isinstance(logits, tuple):
            # Depending on the model and config, logits may contain extra tensors,
            # like past_key_values, but logits always come first
            logits = logits[0]
        return logits.argmax(dim=-1)

    metric = evaluate.load("accuracy")

    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        # preds have the same shape as the labels, after the argmax(-1) has been calculated
        # by preprocess_logits_for_metrics but we need to shift the labels
        labels = labels[:, 1:].reshape(-1)
        preds = preds[:, :-1].reshape(-1)
        return metric.compute(predictions=preds, references=labels)

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=None,
        eval_dataset=eval_dataset,
        tokenizer=tokenizer,
        # Data collator will default to DataCollatorWithPadding, so we change it.
        data_collator=default_data_collator,
        compute_metrics=compute_metrics,
        preprocess_logits_for_metrics=preprocess_logits_for_metrics,
    )
    
    transformers.utils.logging.set_verbosity(transformers.utils.logging.WARNING)

    # Evaluation
    metrics = trainer.evaluate()

    max_eval_samples = len(eval_dataset)
    metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
    try:
        perplexity = math.exp(metrics["eval_loss"])
    except OverflowError:
        perplexity = float("inf")
    metrics["perplexity"] = perplexity

    return perplexity

if __name__ == "__main__":
    print(get_score())