Lim0011's picture
Upload 251 files
85e3d20 verified
raw
history blame
3.55 kB
import torch
import torch.nn.functional as F
from torchvision import transforms, datasets
from torch.utils.data import DataLoader
import torch.nn as nn
# Add data augmentation transforms
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# Define the neural network model
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# Set device for training
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load the CIFAR-10 dataset
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
# Define the dataloaders
batch_size = 128
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, drop_last=True,num_workers=4)
# Define the optimizer and loss function
model = Net().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
criterion = nn.CrossEntropyLoss()
def test_model(dataloader):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
return 100 * correct / total
# Train the model
epochs = 5
for epoch in range(epochs):
running_loss = 0.0
model.train()
for i, (inputs, labels) in enumerate(train_dataloader):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99: # print every 2000 mini-batches
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 100:.3f}')
running_loss = 0.0
train_accuracy = test_model(train_dataloader)
test_accuracy = test_model(test_dataloader)
print(f'Epoch [{epoch+1}/{epochs}], Train Accuracy: {train_accuracy:.2f}%, Test Accuracy: {test_accuracy:.2f}%')
# print training accuracy
train_accuracy = test_model(train_dataloader)
test_accuracy = test_model(test_dataloader)
print (f'Train Accuracy: {train_accuracy:.2f}%, Test Accuracy: {test_accuracy:.2f}%')
# Save the predictions to submission.csv
import pandas as pd
submission = pd.DataFrame(columns=list(range(10)), index=range(len(test_dataset)))
model.eval()
for idx, data in enumerate(test_dataset):
inputs = data[0].unsqueeze(0).to(device)
pred = model(inputs)
pred = torch.softmax(pred[0], dim=0)
submission.loc[idx] = pred.tolist()
submission.to_csv('submission.csv')