MLR-Copilot / app.py
Lim0011's picture
Update app.py
c4dfe88 verified
import gradio as gr
from pathlib import Path
from reactagent.environment import Environment
from reactagent.agents.agent_research import ResearchAgent
from reactagent.runner import create_parser
from reactagent import llm
from reactagent.users.user import User
import os
import json
# Global variables to store session state
env = None
agent = None
state_example = False
state_extract = False
state_generate = False
state_agent = False
state_complete = False
index_ex = "1"
example_text = [
"Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
"Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
]
# Load example JSON file
def load_example_data():
with open("example/example_data.json", "r") as json_file:
example_data = json.load(json_file)
for idx in example_data.keys():
try:
file = example_data[idx]["code_init"]
with open(os.path.join("example", file), "r") as f:
example_data[idx]["code_init"] = f.read()
except FileNotFoundError:
print(f"File not found: {file}. Skipping key: {idx}")
try:
file = example_data[idx]["code_final"]
with open(os.path.join("example", file), "r") as f:
example_data[idx]["code_final"] = f.read()
except FileNotFoundError:
print(f"File not found: {file}. Skipping key: {idx}")
return example_data
example_data = load_example_data()
# Function to handle the selection of an example and populate the respective fields
def load_example(example_id):
global index_ex
index_ex = str(example_id)
example = example_data[index_ex]
paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
return paper_text
example_text = [load_example(1), load_example(2)]
# Function to handle example clicks
def load_example_and_set_index(paper_text_input):
global index_ex, state_example
state_example = True
index_ex = str(example_text.index(paper_text_input) + 1)
paper_text = load_example(index_ex)
return paper_text, "", "", "", "", "", ""
########## Phase 1 ##############
def extract_research_elements(paper_text):
global state_extract, index_ex, state_example
if not state_example or paper_text == "":
return "", "", "", ""
state_extract = True
if paper_text != load_example(index_ex):
return "", "", "", ""
example = example_data[index_ex]
tasks = example['research_tasks']
gaps = example['research_gaps']
keywords = example['keywords']
recent_works = "\n".join(example['recent_works'])
return tasks, gaps, keywords, recent_works
# Step 2: Generate Research Hypothesis and Experiment Plan
def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
if (not state_extract or not state_example or paper_text == ""):
return "", "", "", ""
global state_generate, index_ex
state_generate = True
hypothesis = example_data[index_ex]['hypothesis']
experiment_plan = example_data[index_ex]['experiment_plan']
return hypothesis, experiment_plan, hypothesis, experiment_plan
########## Phase 2 & 3 ##############
def start_experiment_agent(hypothesis, plan):
if (not state_extract or not state_generate or not state_example):
return "", "", ""
global state_agent, step_index, state_complete
state_agent = True
step_index = 0
state_complete = False
# predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
return example_data[index_ex]['code_init'], predefined_action_log, "", ""
def submit_feedback(user_feedback, history, previous_response):
if (not state_extract or not state_generate or not state_agent or not state_example):
return "", "", ""
global step_index, state_complete
step_index += 1
msg = history
if step_index < len(process_steps):
msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
response_info = process_steps[step_index]
response = info_to_message(response_info) # Convert dictionary to formatted string
response += "Please provide feedback based on the history, response entries, and observation, and questions: "
step_index += 1
msg += response
else:
state_complete = True
response = "Agent Finished."
return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
def load_phase_2_inputs(hypothesis, plan):
return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
predefined_action_log = """
[Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
[Action]: Inspect Script (train.py)
Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
Objective: Understand the training script, including data processing, [...]
[Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
[Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
"""
predefined_observation = """
Epoch [1/10],
Train MSE: 0.543,
Test MSE: 0.688
Epoch [2/10],
Train MSE: 0.242,
Test MSE: 0.493\n
"""
# Initialize the global step_index and history
process_steps = [
{
"Action": "Inspect Script Lines (train.py)",
"Observation": (
"The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
"Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
"to calculate RMSE for different dimensions. Placeholder functions train_model and "
"predict exist without implementations."
),
},
{
"Action": "Execute Script (train.py)",
"Observation": (
"The script executed successfully. Generated embeddings using the BERT model. Completed "
"the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
),
},
{
"Action": "Edit Script (train.py)",
"Observation": (
"Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
"The edited train.py now has clearly defined functions"
"for data loading (load_data), model definition (build_model), "
"training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
),
},
{
"Action": "Retrieve Model",
"Observation": "CNN and BiLSTM retrieved.",
},
{
"Action": "Execute Script (train.py)",
"Observation": (
"The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
"the decrease in loss indicates improved model performance."
)
},
{
"Action": "Evaluation",
"Observation": predefined_observation,
}
]
def info_to_message(info):
msg = ""
for k, v in info.items():
if isinstance(v, dict):
tempv = v
v = ""
for k2, v2 in tempv.items():
v += f"{k2}:\n {v2}\n"
v = User.indent_text(v, 2)
msg += '-' * 64
msg += '\n'
msg += f"{k}:\n{v}\n"
return msg
def handle_example_click(example_index):
global index_ex
index_ex = example_index
return load_example(index_ex) # Simply return the text to display it in the textbox
# Gradio Interface
with gr.Blocks(theme=gr.themes.Default()) as app:
gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
gr.Markdown("### ")
gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
# Use state variables to store generated hypothesis and experiment plan
hypothesis_state = gr.State("")
experiment_plan_state = gr.State("")
########## Phase 1: Research Idea Generation Tab ##############
with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
gr.Markdown("### Extract Research Elements and Generate Research Ideas")
with gr.Row():
with gr.Column():
paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
extract_button = gr.Button("πŸ” Extract Research Elements")
with gr.Row():
tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
with gr.Column():
with gr.Row(): # Move the button to the top
generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
with gr.Group():
gr.Markdown("### 🌟 Research Idea")
with gr.Row():
hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
gr.Examples(
examples=example_text,
inputs=[paper_text_input],
outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
fn=load_example_and_set_index,
run_on_click = True,
label="⬇️ Click an example to load"
)
# Step 1: Extract Research Elements
extract_button.click(
fn=extract_research_elements,
inputs=paper_text_input,
outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
)
generate_button.click(
fn=generate_and_store,
inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
)
########## Phase 2 & 3: Experiment implementation and execution ##############
with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
gr.Markdown("### Interact with the ExperimentAgent")
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown("### 🌟 Generated Research Idea")
with gr.Row():
idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
with gr.Column():
start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
with gr.Group():
gr.Markdown("### Implementation + Execution Log")
log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
with gr.Column():
response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
hypothesis_state.change(
fn=load_phase_2_inputs,
inputs=[hypothesis_state, experiment_plan_state],
outputs=[idea_input, plan_input, code_display]
)
# Start research agent
start_exp_agnet.click(
fn=start_experiment_agent,
inputs=[hypothesis_state, experiment_plan_state],
outputs=[code_display, log, response, feedback]
)
submit_button.click(
fn=submit_feedback,
inputs=[feedback, log, response],
outputs=[log, response, code_display, feedback]
)
if __name__ == "__main__":
step_index = 0
app.launch(share=True)