MLR-Copilot / reactagent /p2m_actions.py
Lim0011's picture
Upload 251 files
85e3d20 verified
import os
import torch
import datasets
import transformers
import json
from .schema import ActionInfo, EnvException, EnhancedJSONEncoder
from reactagent.prompt2model.prompt_parser import MockPromptSpec, TaskType
from reactagent.prompt2model.dataset_retriever import DescriptionDatasetRetriever
from reactagent.prompt2model.dataset_generator import PromptBasedDatasetGenerator, DatasetSplit
from reactagent.prompt2model.dataset_processor import TextualizeProcessor
from reactagent.prompt2model.model_retriever import DescriptionModelRetriever
from reactagent.prompt2model.model_trainer import GenerationModelTrainer
from reactagent.prompt2model.model_executor import GenerationModelExecutor, ModelOutput
from reactagent.prompt2model.model_evaluator import Seq2SeqEvaluator
def generate_dataset(instruction, examples, save_dir, num_train, num_valid, num_test, work_dir = '.', **kwargs):
try:
num_train = int(num_train)
num_valid = int(num_valid)
num_test = int(num_test)
except ValueError:
raise EnvException("Number of examples should be an integer")
prompt_spec = MockPromptSpec(TaskType.TEXT_GENERATION, instruction=instruction, examples=examples)
generator = PromptBasedDatasetGenerator()
dataset_dict = generator.generate_dataset_dict(prompt_spec, {
DatasetSplit.TRAIN: num_train,
DatasetSplit.VAL: num_valid,
DatasetSplit.TEST: num_test
})
save_path = os.path.join(work_dir, save_dir)
dataset_dict.save_to_disk(save_path)
return f"Dataset successfully generated and saved to {save_path}"
def retrieve_dataset(instruction, save_dir, work_dir = '.', **kwargs):
prompt_spec = MockPromptSpec(TaskType.TEXT_GENERATION, instruction=instruction, examples="")
retriever = DescriptionDatasetRetriever()
dataset_dict = retriever.retrieve_dataset_dict(prompt_spec)
save_path = os.path.join(work_dir, save_dir)
dataset_dict.save_to_disk(save_path)
return f"Dataset successfully generated and saved to {save_path}"
def retrieve_model(instruction, work_dir = '.', **kwargs):
prompt_spec = MockPromptSpec(TaskType.TEXT_GENERATION, instruction=instruction, examples="")
retriever = DescriptionModelRetriever(use_bm25=True, use_HyDE=True)
top_models = retriever.retrieve(prompt_spec)
return "Top Models:\n" + "".join(f"{i+1}. {model}\n" for i, model in enumerate(top_models))
def process_dataset(instruction, load_dirs, save_dirs, work_dir = '.', **kwargs):
prompt_spec = MockPromptSpec(TaskType.TEXT_GENERATION, instruction=instruction, examples="")
load_dirs = load_dirs.split(':')
save_dirs = save_dirs.split(':')
if len(load_dirs) != len(save_dirs):
raise EnvException("Number of load directories should match number of save directories")
load_paths = [os.path.join(work_dir, load_dir) for load_dir in load_dirs]
save_paths = [os.path.join(work_dir, save_dir) for save_dir in save_dirs]
# load the datasets
dataset_dicts = [datasets.load_from_disk(load_path) for load_path in load_paths]
# process the datasets
processor = TextualizeProcessor(has_encoder=True)
modified_dataset_dicts = processor.process_dataset_dict(prompt_spec, dataset_dicts)
# save the processed datasets
for dataset_dict, save_path in zip(modified_dataset_dicts, save_paths):
dataset_dict.save_to_disk(save_path)
return f"Data successfully processed and saved to {save_paths}"
def train_model(model_name, load_dirs, result_dir, epochs, batch_size, warmup_steps, weight_decay, learning_rate, work_dir = '.', **kwargs):
try:
epochs = int(epochs)
batch_size = int(batch_size)
warmup_steps = int(warmup_steps)
weight_decay = float(weight_decay)
learning_rate = float(learning_rate)
except ValueError:
raise EnvException("Numerical parameters should be integers or floats as appropriate")
load_dirs = load_dirs.split(':')
result_dir = os.path.join(work_dir, result_dir)
# load the datasets
load_paths = [os.path.join(work_dir, load_dir) for load_dir in load_dirs]
dataset_dicts = [datasets.load_from_disk(load_path) for load_path in load_paths]
training_datasets = [dataset_dict["train"] for dataset_dict in dataset_dicts]
validation_datasets = [dataset_dict["val"] for dataset_dict in dataset_dicts]
trainer = GenerationModelTrainer(
model_name,
has_encoder=True,
executor_batch_size=batch_size,
tokenizer_max_length=1024,
sequence_max_length=1280,
)
hparams ={
"output_dir": os.path.join(result_dir, "training_output"),
"save_strategy": "epoch",
"num_train_epochs": epochs,
"per_device_train_batch_size": batch_size,
"evaluation_strategy": "epoch",
"warmup_steps": warmup_steps,
"weight_decay": weight_decay,
"learning_rate": learning_rate,
},
trained_model, trained_tokenizer = trainer.train_model(
hyperparameter_choices=hparams,
training_datasets=training_datasets,
validation_datasets=validation_datasets,
)
trained_model.save_pretrained(os.path.join(result_dir, "trained_model"))
trained_tokenizer.save_pretrained(os.path.join(result_dir, "trained_tokenizer"))
return f"Model and Tokenizer successfully trained and saved respectively to {result_dir}/trained_model and {result_dir}/trained_tokenizer"
def execute_model(result_dir, load_dirs, save_path, batch_size, input_column, work_dir = '.', **kwargs):
load_dirs = load_dirs.split(':')
result_dir = os.path.join(work_dir, result_dir)
save_path = os.path.join(work_dir, save_path)
try:
batch_size = int(batch_size)
except ValueError:
raise EnvException("Batch size should be an integer")
# load the datasets
load_paths = [os.path.join(work_dir, load_dir) for load_dir in load_dirs]
dataset_dicts = [datasets.load_from_disk(load_path) for load_path in load_paths]
test_datasets = [dataset_dict["test"] for dataset_dict in dataset_dicts]
test_dataset = datasets.concatenate_datasets(test_datasets)
trained_model_path = os.path.join(result_dir, "trained_model")
trained_tokenizer_path = os.path.join(result_dir, "trained_tokenizer")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
trained_model = transformers.AutoModelForSeq2SeqLM.from_pretrained(trained_model_path).to(device)
trained_tokenizer = transformers.AutoTokenizer.from_pretrained(trained_tokenizer_path)
executor = GenerationModelExecutor(
trained_model,
trained_tokenizer,
batch_size,
tokenizer_max_length=1024,
sequence_max_length=1280,
)
outputs = executor.make_prediction(
test_set=test_dataset,
input_column=input_column
)
with open(save_path, 'w') as f:
json.dump(outputs, f, cls=EnhancedJSONEncoder)
return f"Model successfully executed on the test sets of the specified datasets and saved to {save_path}"
def evaluate_model(load_dirs, save_path, output_column, work_dir = '.', **kwargs):
load_dirs = load_dirs.split(':')
# load the datasets
load_paths = [os.path.join(work_dir, load_dir) for load_dir in load_dirs]
dataset_dicts = [datasets.load_from_disk(load_path) for load_path in load_paths]
test_datasets = [dataset_dict["test"] for dataset_dict in dataset_dicts]
test_dataset = datasets.concatenate_datasets(test_datasets)
save_path = os.path.join(work_dir, save_path)
with open(save_path, 'r') as f:
outputs = json.load(f)
outputs = [ModelOutput(**output) for output in outputs]
evaluator = Seq2SeqEvaluator()
metric_values = evaluator.evaluate_model(
test_dataset,
gt_column=output_column,
predictions=outputs,
encoder_model_name="xlm-roberta-base",
)
return f"Evaluation metrics: {metric_values}"
P2M_ACTIONS = [
ActionInfo(
name="Retrieve Model",
description="Retrieve a suitable model based on a detailed description of the requirements. You can obtain the model given the name using the transformers.AutoModel.from_pretrained function.",
usage={
"instruction": "an instruction on how to generate the output from the input",
},
return_value="The observation will be a list of suitable models. You can choose one of them based on the requirements.",
is_primitive=False,
function=retrieve_model
),
]
# P2M_ACTIONS = [
# ActionInfo(
# name="Generate Dataset",
# description="Generate a dataset based on an instruction and examples. You can load the dataset later from `save_dir` using the load_from_disk function of the HuggingFace datasets library.",
# usage={
# "instruction": "an instruction on how to generate the output from the input",
# "examples": "examples of input-output pairs",
# "save_dir": "directory to save the generated dataset dict to. We recommend saving to data/generated/",
# "num_train": "number of examples to generate in the training set",
# "num_valid": "number of examples to generate in the validation set",
# "num_test": "number of examples to generate in the test set",
# },
# return_value="The observation will be a success message if the dataset was generated successfully. Otherwise, an error message will be returned.",
# is_primitive=False,
# function=generate_dataset
# ),
# ActionInfo(
# name="Retrieve Dataset",
# description="Retrieve a suitable dataset based on a detailed description of the requirements. You can load the dataset later from `save_dir` using the load_from_disk function of the HuggingFace datasets library.",
# usage={
# "instruction": "an instruction on how to generate the output from the input",
# "save_dir": "directory to save the generated dataset dict to. We recommend saving to data/retrieved/",
# },
# return_value="The observation will be a success message if the dataset was retrieved successfully. Otherwise, an error message will be returned.",
# is_primitive=False,
# function=retrieve_dataset
# ),
# ActionInfo(
# name="Retrieve Model",
# description="Retrieve a suitable model based on a detailed description of the requirements. You can obtain the model given the name using the transformers.AutoModelForSeq2SeqLM.from_pretrained function.",
# usage={
# "instruction": "an instruction on how to generate the output from the input",
# },
# return_value="The observation will be a list of suitable models. You can choose one of them based on the requirements.",
# is_primitive=False,
# function=retrieve_model
# ),
# ActionInfo(
# name="Process Dataset",
# description="Process dataset based on a detailed description of the requirements. You can load the processed data later from `save_dirs` using the load_from_disk function of the HuggingFace datasets library. The input text will be in the `model_input` column and the output text will be in the `model_output` column.",
# usage={
# "instruction": "an instruction on how to generate the output from the input",
# "load_dirs": "directories to load the dataset dicts from, separated by colons",
# "save_dirs": "directories to save the processed dataset dicts to, separated by colons. The order should match the order of the loaded datasets. We recommend saving to data/processed/",
# },
# return_value="The observation will be a success message if the data was processed successfully. Otherwise, an error message will be returned.",
# is_primitive=False,
# function=process_dataset
# ),
# ActionInfo(
# name="Train Model",
# description="Train a Seq2Seq model from HuggingFace transformers library using the processed datasets and given hyperparameters.",
# usage={
# "model_name": "name of the model to train",
# "load_dirs": "directories to load the dataset dicts from, separated by colons",
# "result_dir": "directory to save the trained model and tokenizer to. We recommend using results/{trial_id}/. The trained model will be available as `{result_dir}/trained_model/` and the tokenizer will be available as `{result_dir}/trained_tokenizer/`.",
# "epochs": "number of epochs to train the model for",
# "batch_size": "batch size for training the model",
# "warmup_steps": "number of warmup steps for the optimizer",
# "weight_decay": "weight decay for the optimizer",
# "learning_rate": "learning rate for the optimizer",
# },
# return_value="The observation will be a success message if the model was trained successfully. Otherwise, an error message will be returned.",
# is_primitive=False,
# function=train_model
# ),
# ActionInfo(
# name="Execute Model on Test Set",
# description="Execute a trained model on the test sets of specified dataset dicts.",
# usage={
# "result_dir": "directory where the trained model and tokenizer are saved",
# "load_dirs": "directories to load the dataset dicts from, separated by colons",
# "save_path": "file to save the results of the model execution in json format",
# "batch_size": "batch size for executing the model",
# "input_column": "column name of the input text",
# },
# return_value="The observation will be a success message if the model was executed successfully. Otherwise, an error message will be returned.",
# is_primitive=False,
# function=execute_model,
# ),
# ActionInfo(
# name="Evaluate Model",
# description="Evaluate a trained model on the test sets of specified dataset dicts.",
# usage={
# "load_dirs": "directories to load the dataset dicts from, separated by colons",
# "save_path": "file to load the results of the model execution in json format",
# "output_column": "column name of the output text",
# },
# return_value="The values for various evaluation metrics will be returned.",
# is_primitive=False,
# function=evaluate_model,
# )
# ]