""" This file contains the code for calling all LLM APIs. """ from pathlib import Path from .schema import TooLongPromptError, LLMError from functools import partial from transformers import AutoTokenizer import transformers import torch import os import time # try: # from huggingface_hub import login # login(os.environ["HF_TOKEN"]) # except Exception as e: # print(e) # print("Could not load hugging face token HF_TOKEN from environ") try: import anthropic # setup anthropic API key anthropic_client = anthropic.Anthropic(api_key=os.environ['CLAUDE_API_KEY']) except Exception as e: print(e) print("Could not load anthropic API key CLAUDE_API_KEY from environ") try: import openai openai_client = openai.OpenAI() except Exception as e: print(e) print("Could not load OpenAI API key OPENAI_API_KEY from environ") class LlamaAgent: def __init__( self, model_name, temperature: float = 0.5, top_p: float = None, max_batch_size: int = 1, max_gen_len = 2000, ): from huggingface_hub import login login() model = f"meta-llama/{model_name}" self.pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) self.temperature = temperature self.top_p = top_p self.max_gen_len = max_gen_len def complete_text( self, prompts: list[str], max_gen_len=None, temperature=None, top_p=None, num_responses=1, ) -> list[str]: if max_gen_len is None: max_gen_len = self.max_gen_len if temperature is None: temperature = self.temperature if top_p is None: top_p = self.top_p results = [] for prompt in prompts: seqs = self.pipeline( [{"role": "user", "content": prompt}], do_sample=True, temperature=temperature, top_p=top_p, num_return_sequences=num_responses, max_new_tokens=max_gen_len, ) seqs = [s["generated_text"][-1]["content"] for s in seqs] results += seqs return results agent_cache = {} def complete_text_openai(prompt, stop_sequences=[], model="gpt-3.5-turbo", max_tokens_to_sample=2000, temperature=0.2): """ Call the OpenAI API to complete a prompt.""" raw_request = { "model": model, "temperature": temperature, "max_tokens": max_tokens_to_sample, "stop": stop_sequences or None, # API doesn't like empty list } messages = [{"role": "user", "content": prompt}] response = openai_client.chat.completions.create(messages=messages, **raw_request) completion = response.choices[0].message.content return completion def complete_text_claude(prompt, stop_sequences=[anthropic.HUMAN_PROMPT], model="claude-v1", max_tokens_to_sample=2000, temperature=0.5): """ Call the Claude API to complete a prompt.""" ai_prompt = anthropic.AI_PROMPT try: while True: try: message = anthropic_client.messages.create( messages=[ { "role": "user", "content": prompt, } ], model=model, stop_sequences=stop_sequences, temperature=temperature, max_tokens=max_tokens_to_sample, ) except anthropic.RateLimitError: time.sleep(0.1) continue except anthropic.InternalServerError as e: pass try: completion = message.content[0].text break except: print("end_turn???") pass except anthropic.APIStatusError as e: print(e) raise TooLongPromptError() except Exception as e: raise LLMError(e) return completion def complete_multi_text( prompts: str, model: str, max_tokens_to_sample=None, temperature=0.5, top_p=None, responses_per_request=1, ) -> list[str]: """ Complete text using the specified model with appropriate API. """ if model.startswith("claude"): completions = [] for prompt in prompts: for _ in range(responses_per_request): completion = complete_text_claude( prompt, stop_sequences=[anthropic.HUMAN_PROMPT, "Observation:"], temperature=temperature, model=model, ) completions.append(completion) return completions elif model.startswith("gpt"): completions = [] for prompt in prompts: for _ in range(responses_per_request): completion = complete_text_openai( prompt, stop_sequences=[anthropic.HUMAN_PROMPT, "Observation:"], temperature=temperature, model=model, ) completions.append(completion) return completions else: #llama if model not in agent_cache: agent_cache[model] = LlamaAgent(model_name=model) completions = [] try: completions = agent_cache[model].complete_text( prompts=prompts, num_responses=responses_per_request, max_gen_len=max_tokens_to_sample, temperature=temperature, top_p=top_p ) for _ in range(responses_per_request): completions += agent_cache[model].complete_text( prompts=prompts, ) except Exception as e: raise LLMError(e) return completions def complete_text( prompt: str, model: str, max_tokens_to_sample=2000, temperature=0.5, top_p=None, ) -> str: completion = complete_multi_text( prompts=[prompt], model=model, max_tokens_to_sample=max_tokens_to_sample, temperature=temperature, top_p=top_p, )[0] return completion # specify fast models for summarization etc FAST_MODEL = "claude-3-haiku" def complete_text_fast(prompt, *args, **kwargs): return complete_text(prompt, model=FAST_MODEL, *args, **kwargs)