# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit tests for `dataset.py`.""" from typing import Generator, List from absl.testing import absltest from absl.testing import parameterized from clrs._src import dataset from clrs._src import samplers from clrs._src import specs import numpy as np _Array = np.ndarray def _stack_to_shortest(x: List[_Array]) -> _Array: min_len = min(map(len, x)) return np.array([a[:min_len] for a in x]) def _make_sampler(algo: str) -> samplers.Sampler: sampler, _ = samplers.build_sampler( algo, seed=samplers.CLRS30['val']['seed'], num_samples=samplers.CLRS30['val']['num_samples'], length=samplers.CLRS30['val']['length'], ) return sampler def _make_iterable_sampler( algo: str, batch_size: int) -> Generator[samplers.Feedback, None, None]: sampler = _make_sampler(algo) while True: yield sampler.next(batch_size) class DatasetTest(parameterized.TestCase): @parameterized.product( name=specs.CLRS_30_ALGS[:5], chunk_length=[20, 50]) def test_chunkify(self, name: str, chunk_length: int): """Test that samples are concatenated and split in chunks correctly.""" batch_size = 8 ds = _make_iterable_sampler(name, batch_size) chunked_ds = dataset.chunkify( _make_iterable_sampler(name, batch_size), chunk_length) samples = [next(ds) for _ in range(20)] cum_lengths = np.cumsum([s.features.lengths for s in samples], axis=0) n_chunks = np.amax(cum_lengths[-1]).astype(int) // chunk_length + 1 chunks = [next(chunked_ds) for _ in range(n_chunks)] # Check correctness of `is_first` and `is_last` markers start_idx = _stack_to_shortest([np.where(x)[0] for x in np.concatenate( [c.features.is_first for c in chunks]).T]).T end_idx = _stack_to_shortest([np.where(x)[0] for x in np.concatenate( [c.features.is_last for c in chunks]).T]).T assert len(start_idx) >= len(cum_lengths) start_idx = start_idx[:len(cum_lengths)] assert len(end_idx) >= len(cum_lengths) end_idx = end_idx[:len(cum_lengths)] np.testing.assert_equal(start_idx[0], 0) np.testing.assert_array_equal(cum_lengths - 1, end_idx) np.testing.assert_array_equal(cum_lengths[:-1], start_idx[1:]) # Check that inputs, outputs and hints have been copied correctly all_input = np.concatenate([c.features.inputs[0].data for c in chunks]) all_output = np.concatenate([c.outputs[0].data for c in chunks]) all_hint = np.concatenate([c.features.hints[0].data for c in chunks]) for i in range(batch_size): length0 = int(samples[0].features.lengths[i]) length1 = int(samples[1].features.lengths[i]) # Check first sample np.testing.assert_array_equal( all_input[:length0, i], np.tile(samples[0].features.inputs[0].data[i], [length0, 1])) np.testing.assert_array_equal( all_output[:length0, i], np.tile(samples[0].outputs[0].data[i], [length0, 1])) np.testing.assert_array_equal( all_hint[:length0, i], samples[0].features.hints[0].data[:length0, i]) # Check second sample np.testing.assert_array_equal( all_input[length0:length0 + length1, i], np.tile(samples[1].features.inputs[0].data[i], [length1, 1])) np.testing.assert_array_equal( all_output[length0:length0 + length1, i], np.tile(samples[1].outputs[0].data[i], [length1, 1])) np.testing.assert_array_equal( all_hint[length0:length0 + length1, i], samples[1].features.hints[0].data[:length1, i]) if __name__ == '__main__': absltest.main()