import torch import pandas import gradio import PIL import huggingface_hub import huggingface_hub.hf_api import json import requests # import openai # openai.api_key = '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' class HFace_Pluto(object): # # initialize the object def __init__(self, name="Pluto",*args, **kwargs): super(HFace_Pluto, self).__init__(*args, **kwargs) self.author = "Duc Haba" self.name = name self._ph() self._pp("Hello from class", str(self.__class__) + " Class: " + str(self.__class__.__name__)) self._pp("Code name", self.name) self._pp("Author is", self.author) self._ph() # # define class var for stable division self._device = 'cuda' self._steps = [3,8,21,55,89,144] self._guidances = [1.1,3.0,5.0,8.0,13.0,21.0] self._models = ['CompVis/stable-diffusion-v1-4', #default 'stabilityai/stable-diffusion-2-1', #1 latest as of feb. 28, 2023 'dreamlike-art/dreamlike-diffusion-1.0', #2 ilike 'prompthero/openjourney-v2', #3 ilike 'itecgo/sd-lexica_6k-model', #4 'nitrosocke/mo-di-diffusion', 'coreco/seek.art_MEGA', 'andite/anything-v4.0', #7 anime 'nitrosocke/Nitro-Diffusion', '22h/vintedois-diffusion-v0-1', #9 ilike 'Lykon/DreamShaper', #10 ilike 'rrustom/stable-architecture-diffusers', # 11 'hakurei/waifu-diffusion', #anime style 'wavymulder/portraitplus', #13 ilike 'dreamlike-art/dreamlike-photoreal-2.0', #no check 'johnslegers/epic-diffusion', #15 ilike good example 'nitrosocke/Arcane-Diffusion' #16 ilike ] self._seed = 667 # sum of walnut in ascii (or Angle 667) self._width = 512 self._height = 512 self._step = 50 self._guidances = 7.5 #self._generator = torch.Generator(device='cuda') self.pipes = [] self.prompts = [] self.images = [] self.seeds = [] self.fname_id = 0 self.dname_img = "img_colab/" return # # pretty print output name-value line def _pp(self, a, b): print("%34s : %s" % (str(a), str(b))) return # # pretty print the header or footer lines def _ph(self): print("-" * 34, ":", "-" * 34) return # # fetch huggingface file def fetch_hface_files(self, hf_names, hf_space="duchaba/skin_cancer_diagnose", local_dir="/content/"): f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names)) try: for f in hf_names: lo = local_dir + f huggingface_hub.hf_hub_download(repo_id=hf_space, filename=f, use_auth_token=True,repo_type=huggingface_hub.REPO_TYPE_SPACE, force_filename=lo) except: self._pp("*Error", f) return # # def push_hface_files(self, hf_names, hf_space="duchaba/skin_cancer_diagnose", local_dir="/content/"): f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names)) try: for f in hf_names: lo = local_dir + f huggingface_hub.upload_file( path_or_fileobj=lo, path_in_repo=f, repo_id=hf_space, repo_type=huggingface_hub.REPO_TYPE_SPACE) except: self._pp("*Error", f) return # def write_file(self,fname, txt): f = open(fname, "w") f.writelines("\n".join(txt)) f.close() return def draw_it(self,prompt): url = 'lion.png' img = PIL.Image.open(url) return img # # add module/method # import functools def add_method(cls): def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): return func(*args, **kwargs) setattr(cls, func.__name__, wrapper) return func # returning func means func can still be used normally return decorator # instantiate the class monty = HFace_Pluto('Monty') # use magic prompt model monty.gpt2_pipe = transformers.pipeline('text-generation', model='Gustavosta/MagicPrompt-Stable-Diffusion', tokenizer='gpt2') # fetch prompt @add_method(HFace_Pluto) def _print_response(self, response): for x in response: print(x['generated_text']) return # @add_method(HFace_Pluto) def fetch_prompt(self, prompt, max_num=1, max_length=240, is_print=False): response = self.gpt2_pipe(prompt, max_length=max_length, num_return_sequences=max_num) # if (is_print): self._print_response(response) return response # use pluto _pp for interface testing # iface = gradio.Interface(fn=pluto.draw_it, inputs="text", outputs="image", # flagging_options=["Excellent", "Good", "Not Bad"]) iface = gradio.Interface(fn=monty.fetch_prompt, inputs="text", outputs="text", flagging_options=[]) # Launch it iface.launch()