File size: 6,892 Bytes
104b180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

import fastai
import fastai.vision
import PIL
import gradio
import matplotlib
import numpy
import pandas
from fastai.vision.all import *
#
# create class
class ADA_SKIN(object):
  #
  # initialize the object
  def __init__(self, name="Wallaby",verbose=True,*args, **kwargs):
    super(ADA_SKIN, self).__init__(*args, **kwargs)
    self.author = "Duc Haba"
    self.name = name
    if (verbose):
      self._ph()
      self._pp("Hello from class", str(self.__class__) + " Class: " + str(self.__class__.__name__))
      self._pp("Code name", self.name)
      self._pp("Author is", self.author)
      self._ph()
    #
    self.article = '<div><h3>Citation:</h3><ul><li>'
    self.article += 'Author/Dev: Duc Haba, 2022.</li>'
    self.article += '<li><a target="_blank" href="https://linkedin.com/in/duchaba">https://linkedin.com/in/duchaba</a></li>'
    self.article += '<li>The training dataset the combination of three datasets</li>'
    self.article += '<ol>'
    self.article += '<li>https://www.kaggle.com/datasets/surajghuwalewala/ham1000-segmentation-and-classification</li>'
    self.article += '<li>https://www.kaggle.com/datasets/andrewmvd/isic-2019</li>'
    self.article += '<li>https://www.kaggle.com/datasets/jnegrini/skin-lesions-act-keratosis-and-melanoma</li>'        
    self.article += '</ol></ul>'
    self.article += '<h3>Articles:</h3><ul>'
    self.article += '<li><a target="_blank" href="https://www.linkedin.com/pulse/120-dog-breeds-hugging-face-duc-haba/">'
    self.article += '"Skin Cancer Diagnose"</a> on LinkedIn, on <a target="_blank" href='
    self.article += '"https://duchaba.medium.com/120-dog-breeds-on-hugging-face-75288c7952d6">Medium.</a></li>'
    self.article += '</ul>'  
    self.article += '<h3>Example Images: (left to right)</h3><ol>'
    self.article += '<li>Bowen Disease (AKIEC)</li>'
    self.article += '<li>Basal Cell Carcinoma</li>'
    self.article += '<li>Benign Keratosis-like Lesions</li>'
    self.article += '<li>Dermatofibroma</li>'
    self.article += '<li>Melanoma</li>'
    self.article += '<li>Melanocytic Nevi</li>'
    self.article += '<li>Squamous Cell Carcinoma</li>'   
    self.article += '<li>Vascular Lesions</li>' 
    self.article += '<li>Benign</li>' 
    self.article += '<li>Benign 2</li></ol>'         
    self.article += '<h3>Train Result:</h3><ul>'
    self.article += '<li>Skin Cancer Classificaiton: F1-Score, Precision, and Recall Graph</li>'
    self.article += '<li><img src="file/ada_f1_skin.png" alt="F1-Score, Precision, and Recall Graph" width="640"</li>'
    self.article += '<li>Skin Cancer Malignant or Benign: F1-Score, Precision, and Recall Graph</li>'
    self.article += '<li><img src="file/ada_f1_skin_be.png" alt="F1-Score, Precision, and Recall Graph" width="640"</li>'    
    self.article += '</ul>'
    self.article += '<h3>Dev Stack:</h3><ul>'
    self.article += '<li>Jupyter Notebook, Python, Pandas, Matplotlib, Sklearn</li>'
    self.article += '<li>Fast.ai, PyTorch</li>'
    self.article += '</ul>'
    self.article += '<h3>Licenses:</h3><ul>'
    self.article += '<li>GNU GPL 3.0, https://www.gnu.org/licenses/gpl-3.0.txt</li>'        
    self.article += '</ul></div>'
    self.examples = ['akiec1.jpg','bcc1.jpg','bkl1.jpg','df1.jpg','mel1.jpg',
      'nevi1.jpg','scc1.jpg','vl1.jpg','benign1.jpg','benign3.jpg']
    self.title = "Skin Cancer Diagnose"
    return
  # 
  # pretty print output name-value line
  def _pp(self, a, b):
    print("%34s : %s" % (str(a), str(b)))
    return
  #
  # pretty print the header or footer lines
  def _ph(self):
    print("-" * 34, ":", "-" * 34)
    return
  # 
  def _predict_image(self,img,cat):
    pred,idx,probs = learn.predict(img)
    return dict(zip(cat, map(float,probs)))
  #
  def _predict_image2(self,img,cat):
    pred,idx,probs = learn2.predict(img)
    return dict(zip(cat, map(float,probs)))
  #  
  def _draw_pred(self,df_pred, df2):
    canvas, pic = matplotlib.pyplot.subplots(1,2, figsize=(12,6))
    ti = df_pred["breeds"].head(3).values
    ti2 = df2["breeds"].head(2).values
    # special case
    #if (matplotlib.__version__) >= "3.5.2":
    try:
      df_pred["pred"].head(3).plot(ax=pic[0],kind="pie",
        cmap="Set2",labels=ti, explode=(0.02,0,0),
        wedgeprops=dict(width=.4),
        normalize=False)
      df2["pred"].head(2).plot(ax=pic[1],kind="pie",
        colors=["cornflowerblue","darkorange"],labels=ti2, explode=(0.02,0),
        wedgeprops=dict(width=.4),
        normalize=False)      
    except:
      df_pred["pred"].head(3).plot(ax=pic[0],kind="pie",
        cmap="Set2",labels=ti, explode=(0.02,0,0),
        wedgeprops=dict(width=.4))
      df2["pred"].head(2).plot(ax=pic[1],kind="pie",
        colors=["cornflowerblue","darkorange"],labels=ti2, explode=(0.02,0),
        wedgeprops=dict(width=.4))
    t = str(ti[0]) + ": " + str(numpy.round(df_pred.head(1).pred.values[0]*100, 2)) + "% Certainty"
    pic[0].set_title(t,fontsize=14.0, fontweight="bold")
    pic[0].axis('off')
    pic[0].legend(ti, loc="lower right",title="Skin Cancers: Top 3")
    #
    k0 = numpy.round(df2.head(1).pred.values[0]*100, 2)
    k1 = numpy.round(df2.tail(1).pred.values[0]*100, 2)
    if (k0 > k1):
      t2 = str(ti2[0]) + ": " + str(k0) + "% Certainty"
    else:
      t2 = str(ti2[1]) + ": " + str(k1) + "% Certainty"
    pic[1].set_title(t2,fontsize=14.0, fontweight="bold")
    pic[1].axis('off')
    pic[1].legend(ti2, loc="lower right",title="Skin Cancers:")
    #
    # # draw circle
    # centre_circle = matplotlib.pyplot.Circle((0, 0), 0.6, fc='white')
    # p = matplotlib.pyplot.gcf()
    # # Adding Circle in Pie chart
    # p.gca().add_artist(centre_circle)
    #
    #p=plt.gcf()
    #p.gca().add_artist(my_circle)
    #
    canvas.tight_layout()
    return canvas
  #
  def predict_donut(self,img):
    d = self._predict_image(img,self.categories)
    df = pandas.DataFrame(d, index=[0])
    df = df.transpose().reset_index()
    df.columns = ["breeds", "pred"]
    df.sort_values("pred", inplace=True,ascending=False, ignore_index=True)
    #
    d2 = self._predict_image2(img,self.categories2)
    df2 = pandas.DataFrame(d2, index=[0])
    df2 = df2.transpose().reset_index()
    df2.columns = ["breeds", "pred"]
    #df2.sort_values("pred", inplace=True,ascending=False, ignore_index=True)
    #
    canvas = self._draw_pred(df,df2)
    return canvas
#
maxi = ADA_SKIN(verbose=False)
#
learn = fastai.learner.load_learner('ada_learn_skin_norm2000.pkl')
learn2 = fastai.learner.load_learner('ada_learn_malben.pkl')
maxi.categories = learn.dls.vocab
maxi.categories2 = learn2.dls.vocab
hf_image = gradio.inputs.Image(shape=(192, 192))
hf_label = gradio.outputs.Label()
intf = gradio.Interface(fn=maxi.predict_donut, 
  inputs=hf_image, 
  outputs=["plot"], 
  examples=maxi.examples,
  title=maxi.title,
  live=True,
  article=maxi.article)
intf.launch(inline=False,share=True)