kjcjohnson commited on
Commit
543fe4a
·
1 Parent(s): 901bbd9

do the loop

Browse files
Files changed (2) hide show
  1. app.py +9 -54
  2. loop.py +51 -0
app.py CHANGED
@@ -1,64 +1,19 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
  respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ import loop
3
 
4
+ MODEL_ID = "TinyLlama/TinyLlama_v1.1_math_code"
 
 
 
5
 
6
+ handler = loop.EndpointHandler(MODEL_ID)
7
 
8
+ def respond(prompt, grammar):
9
+ args = { "inputs": prompt, "grammar": grammar }
10
+ return handler(prompt)
 
 
 
 
 
 
11
 
12
+ demo = gr.Interface(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  respond,
14
+ inputs=["text", "text"],
15
+ outputs=["text"]
 
 
 
 
 
 
 
 
 
 
16
  )
17
 
 
18
  if __name__ == "__main__":
19
  demo.launch()
loop.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+ from transformers.generation.logits_process import LogitsProcessorList, InfNanRemoveLogitsProcessor
5
+ from transformers_gad.grammar_utils import IncrementalGrammarConstraint
6
+ from transformers_gad.generation.logits_process import GrammarAlignedOracleLogitsProcessor
7
+
8
+ class EndpointHandler():
9
+ def __init__(self, path=""):
10
+ # Preload
11
+ self.tokenizer = AutoTokenizer.from_pretrained(path)
12
+ self.model = AutoModelForCausalLM.from_pretrained(path)
13
+
14
+ def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
15
+ # do it!
16
+ inputs = data.get("inputs",data)
17
+ grammar_str = data.get("grammar", "")
18
+ MAX_NEW_TOKENS=512
19
+ MAX_TIME=30
20
+ print(grammar_str)
21
+ grammar = IncrementalGrammarConstraint(grammar_str, "root", self.tokenizer)
22
+
23
+ # Initialize logits processor for the grammar
24
+ gad_oracle_processor = GrammarAlignedOracleLogitsProcessor(grammar)
25
+ inf_nan_remove_processor = InfNanRemoveLogitsProcessor()
26
+ logits_processors = LogitsProcessorList([
27
+ inf_nan_remove_processor,
28
+ gad_oracle_processor,
29
+ ])
30
+
31
+ input_ids = self.tokenizer([inputs], add_special_tokens=False, return_tensors="pt")["input_ids"]
32
+
33
+ output = self.model.generate(
34
+ input_ids,
35
+ do_sample=True,
36
+ max_time=MAX_TIME,
37
+ max_new_tokens=MAX_NEW_TOKENS,
38
+ logits_processor=logits_processors
39
+ )
40
+
41
+ gad_oracle_processor.reset()
42
+
43
+ # Detokenize generated output
44
+ input_length = 1 if self.model.config.is_encoder_decoder else input_ids.shape[1]
45
+ if (hasattr(output, "sequences")):
46
+ generated_tokens = output.sequences[:, input_length:]
47
+ else:
48
+ generated_tokens = output[:, input_length:]
49
+
50
+ generations = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
51
+ return generations