tdoehmen commited on
Commit
11fbe39
·
1 Parent(s): 6853b2a

show manifest output

Browse files
Files changed (1) hide show
  1. app.py +42 -11
app.py CHANGED
@@ -4,38 +4,60 @@ import spaces
4
  import torch
5
  import os
6
  import re
 
 
7
 
8
  zero = torch.Tensor([0]).cuda()
9
  print(zero.device) # <-- 'cpu' 🤔
10
 
 
 
 
 
 
11
  @spaces.GPU
12
  def run_evaluation(model_name):
13
  print(zero.device) # <-- 'cuda:0' 🤗
14
 
15
  results = []
 
16
 
17
  # Use the secret HF token from the Hugging Face space
18
  if "HF_TOKEN" not in os.environ:
19
- return "Error: HF_TOKEN not found in environment variables."
20
 
21
  manifest_process = None
 
22
  try:
23
  # Start manifest server in background with explicit CUDA_VISIBLE_DEVICES
24
  manifest_cmd = f"""
25
- CUDA_VISIBLE_DEVICES=0 HF_TOKEN={os.environ['HF_TOKEN']} cd duckdb-nsql/ && \
26
- python -m manifest.api.app \
27
  --model_type huggingface \
28
  --model_generation_type text-generation \
29
  --model_name_or_path {model_name} \
30
  --fp16 \
31
  --device 0
32
  """
33
- manifest_process = subprocess.Popen(manifest_cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 
 
 
34
  results.append("Started manifest server in background.")
35
 
 
 
 
 
 
 
 
 
 
 
36
  # Run inference
37
  inference_cmd = f"""
38
- cd duckdb-nsql/ && \
39
  python eval/predict.py \
40
  predict \
41
  eval/data/dev.json \
@@ -59,7 +81,7 @@ def run_evaluation(model_name):
59
 
60
  # Run evaluation
61
  eval_cmd = f"""
62
- cd duckdb-nsql/ && \
63
  python eval/evaluate.py evaluate \
64
  --gold eval/data/dev.json \
65
  --db eval/data/databases/ \
@@ -74,7 +96,7 @@ def run_evaluation(model_name):
74
  if metrics:
75
  results.append(f"Evaluation completed:\n{metrics}")
76
  else:
77
- results.append("Evaluation completed, but get metrics.")
78
 
79
  except subprocess.CalledProcessError as e:
80
  results.append(f"Error occurred: {str(e)}")
@@ -87,15 +109,24 @@ def run_evaluation(model_name):
87
  manifest_process.terminate()
88
  results.append("Terminated manifest server.")
89
 
90
- return "\n\n".join(results)
 
 
 
 
 
 
 
 
91
 
92
  with gr.Blocks() as demo:
93
- gr.Markdown("# DuckDB-NSQL Evaluation App")
94
 
95
  model_name = gr.Textbox(label="Model Name (e.g., Qwen/Qwen2.5-7B-Instruct)")
96
  start_btn = gr.Button("Start Evaluation")
97
- output = gr.Textbox(label="Output", lines=20)
 
98
 
99
- start_btn.click(fn=run_evaluation, inputs=[model_name], outputs=output)
100
 
101
  demo.launch()
 
4
  import torch
5
  import os
6
  import re
7
+ import threading
8
+ import queue
9
 
10
  zero = torch.Tensor([0]).cuda()
11
  print(zero.device) # <-- 'cpu' 🤔
12
 
13
+ def stream_output(process, q):
14
+ for line in iter(process.stdout.readline, b''):
15
+ q.put(line.decode('utf-8').strip())
16
+ process.stdout.close()
17
+
18
  @spaces.GPU
19
  def run_evaluation(model_name):
20
  print(zero.device) # <-- 'cuda:0' 🤗
21
 
22
  results = []
23
+ manifest_logs = []
24
 
25
  # Use the secret HF token from the Hugging Face space
26
  if "HF_TOKEN" not in os.environ:
27
+ return "Error: HF_TOKEN not found in environment variables.", "Error: Cannot start manifest server without HF_TOKEN."
28
 
29
  manifest_process = None
30
+ log_queue = queue.Queue()
31
  try:
32
  # Start manifest server in background with explicit CUDA_VISIBLE_DEVICES
33
  manifest_cmd = f"""
34
+ cd duckdb-nsql/ &&
35
+ CUDA_VISIBLE_DEVICES=0 HF_TOKEN={os.environ['HF_TOKEN']} python -m manifest.api.app \
36
  --model_type huggingface \
37
  --model_generation_type text-generation \
38
  --model_name_or_path {model_name} \
39
  --fp16 \
40
  --device 0
41
  """
42
+ manifest_process = subprocess.Popen(manifest_cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True, bufsize=1, universal_newlines=True)
43
+
44
+ threading.Thread(target=stream_output, args=(manifest_process, log_queue), daemon=True).start()
45
+
46
  results.append("Started manifest server in background.")
47
 
48
+ # Wait for the server to initialize (adjust time as needed)
49
+ for _ in range(30):
50
+ try:
51
+ line = log_queue.get(timeout=1)
52
+ manifest_logs.append(line)
53
+ if "Running on" in line: # Server is ready
54
+ break
55
+ except queue.Empty:
56
+ pass
57
+
58
  # Run inference
59
  inference_cmd = f"""
60
+ cd duckdb-nsql/ &&
61
  python eval/predict.py \
62
  predict \
63
  eval/data/dev.json \
 
81
 
82
  # Run evaluation
83
  eval_cmd = f"""
84
+ cd duckdb-nsql/ &&
85
  python eval/evaluate.py evaluate \
86
  --gold eval/data/dev.json \
87
  --db eval/data/databases/ \
 
96
  if metrics:
97
  results.append(f"Evaluation completed:\n{metrics}")
98
  else:
99
+ results.append("Evaluation completed, but couldn't get metrics.")
100
 
101
  except subprocess.CalledProcessError as e:
102
  results.append(f"Error occurred: {str(e)}")
 
109
  manifest_process.terminate()
110
  results.append("Terminated manifest server.")
111
 
112
+ # Collect any remaining logs
113
+ while True:
114
+ try:
115
+ line = log_queue.get_nowait()
116
+ manifest_logs.append(line)
117
+ except queue.Empty:
118
+ break
119
+
120
+ return "\n\n".join(results), "\n".join(manifest_logs)
121
 
122
  with gr.Blocks() as demo:
123
+ gr.Markdown("# DuckDB SQL Evaluation App")
124
 
125
  model_name = gr.Textbox(label="Model Name (e.g., Qwen/Qwen2.5-7B-Instruct)")
126
  start_btn = gr.Button("Start Evaluation")
127
+ output = gr.Textbox(label="Evaluation Output", lines=20)
128
+ manifest_output = gr.Textbox(label="Manifest Server Logs", lines=20)
129
 
130
+ start_btn.click(fn=run_evaluation, inputs=[model_name], outputs=[output, manifest_output])
131
 
132
  demo.launch()