Commit
·
470a9a5
1
Parent(s):
6fdb323
update with examples and save to dataset
Browse files- app.py +13 -2
- evaluation_logic.py +58 -6
app.py
CHANGED
@@ -7,20 +7,31 @@ def gradio_run_evaluation(inference_api, model_name, prompt_format):
|
|
7 |
output.append(result)
|
8 |
yield "\n".join(output)
|
9 |
|
10 |
-
with gr.Blocks() as demo:
|
11 |
gr.Markdown("# DuckDB SQL Evaluation App")
|
12 |
|
13 |
inference_api = gr.Dropdown(
|
14 |
label="Inference API",
|
15 |
-
choices=['openrouter'
|
16 |
value="openrouter"
|
17 |
)
|
18 |
model_name = gr.Textbox(label="Model Name (e.g., qwen/qwen-2.5-72b-instruct)")
|
|
|
|
|
19 |
prompt_format = gr.Dropdown(
|
20 |
label="Prompt Format",
|
21 |
choices=['duckdbinst', 'duckdbinstgraniteshort'], #AVAILABLE_PROMPT_FORMATS,
|
22 |
value="duckdbinstgraniteshort"
|
23 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
start_btn = gr.Button("Start Evaluation")
|
25 |
output = gr.Textbox(label="Output", lines=20)
|
26 |
|
|
|
7 |
output.append(result)
|
8 |
yield "\n".join(output)
|
9 |
|
10 |
+
with gr.Blocks(gr.themes.Soft()) as demo:
|
11 |
gr.Markdown("# DuckDB SQL Evaluation App")
|
12 |
|
13 |
inference_api = gr.Dropdown(
|
14 |
label="Inference API",
|
15 |
+
choices=['openrouter'],
|
16 |
value="openrouter"
|
17 |
)
|
18 |
model_name = gr.Textbox(label="Model Name (e.g., qwen/qwen-2.5-72b-instruct)")
|
19 |
+
gr.Markdown("[View OpenRouter Models](https://openrouter.ai/models?order=top-weekly)")
|
20 |
+
|
21 |
prompt_format = gr.Dropdown(
|
22 |
label="Prompt Format",
|
23 |
choices=['duckdbinst', 'duckdbinstgraniteshort'], #AVAILABLE_PROMPT_FORMATS,
|
24 |
value="duckdbinstgraniteshort"
|
25 |
)
|
26 |
+
gr.Examples(
|
27 |
+
examples=[
|
28 |
+
["openrouter", "qwen/qwen-2.5-72b-instruct", "duckdbinst"],
|
29 |
+
["openrouter", "meta-llama/llama-3.2-3b-instruct:free", "duckdbinstgraniteshort"],
|
30 |
+
["openrouter", "mistralai/mistral-nemo", "duckdbinst"],
|
31 |
+
],
|
32 |
+
inputs=[inference_api, model_name, prompt_format],
|
33 |
+
)
|
34 |
+
|
35 |
start_btn = gr.Button("Start Evaluation")
|
36 |
output = gr.Textbox(label="Output", lines=20)
|
37 |
|
evaluation_logic.py
CHANGED
@@ -4,14 +4,14 @@ from pathlib import Path
|
|
4 |
from datetime import datetime
|
5 |
import json
|
6 |
import traceback
|
|
|
|
|
7 |
|
8 |
-
# Add the necessary directories to the Python path
|
9 |
current_dir = Path(__file__).resolve().parent
|
10 |
duckdb_nsql_dir = current_dir / 'duckdb-nsql'
|
11 |
eval_dir = duckdb_nsql_dir / 'eval'
|
12 |
sys.path.extend([str(current_dir), str(duckdb_nsql_dir), str(eval_dir)])
|
13 |
|
14 |
-
# Import necessary functions and classes
|
15 |
from eval.predict import get_manifest, DefaultLoader, PROMPT_FORMATTERS, generate_sql
|
16 |
from eval.evaluate import evaluate, compute_metrics, get_to_print
|
17 |
from eval.evaluate import test_suite_evaluation, read_tables_json
|
@@ -19,6 +19,54 @@ from eval.schema import TextToSQLParams, Table
|
|
19 |
|
20 |
AVAILABLE_PROMPT_FORMATS = list(PROMPT_FORMATTERS.keys())
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def run_prediction(inference_api, model_name, prompt_format, output_file):
|
23 |
dataset_path = str(eval_dir / "data/dev.json")
|
24 |
table_meta_path = str(eval_dir / "data/tables.json")
|
@@ -60,9 +108,6 @@ def run_prediction(inference_api, model_name, prompt_format, output_file):
|
|
60 |
else:
|
61 |
table_params = []
|
62 |
|
63 |
-
#if len(table_params) == 0:
|
64 |
-
#yield f"[red] WARNING: No tables found for {db_id} [/red]"
|
65 |
-
|
66 |
text_to_sql_inputs.append(TextToSQLParams(
|
67 |
instruction=question,
|
68 |
database=db_id,
|
@@ -73,7 +118,7 @@ def run_prediction(inference_api, model_name, prompt_format, output_file):
|
|
73 |
generated_sqls = generate_sql(
|
74 |
manifest=manifest,
|
75 |
text_to_sql_in=text_to_sql_inputs,
|
76 |
-
retrieved_docs=[[] for _ in text_to_sql_inputs],
|
77 |
prompt_formatter=prompt_formatter,
|
78 |
stop_tokens=stop_tokens,
|
79 |
overwrite_manifest=overwrite_manifest,
|
@@ -84,12 +129,16 @@ def run_prediction(inference_api, model_name, prompt_format, output_file):
|
|
84 |
)
|
85 |
|
86 |
# Save results
|
|
|
87 |
with output_file.open('w') as f:
|
88 |
for original_data, (sql, _) in zip(data, generated_sqls):
|
89 |
output = {**original_data, "pred": sql}
|
90 |
json.dump(output, f)
|
91 |
f.write('\n')
|
92 |
|
|
|
|
|
|
|
93 |
yield f"Prediction completed. Results saved to {output_file}"
|
94 |
except Exception as e:
|
95 |
yield f"Prediction failed with error: {str(e)}"
|
@@ -161,6 +210,9 @@ def run_evaluation(inference_api, model_name, prompt_format="duckdbinstgranitesh
|
|
161 |
categories=categories,
|
162 |
)
|
163 |
|
|
|
|
|
|
|
164 |
yield "Evaluation completed."
|
165 |
|
166 |
if metrics:
|
|
|
4 |
from datetime import datetime
|
5 |
import json
|
6 |
import traceback
|
7 |
+
import uuid
|
8 |
+
from huggingface_hub import CommitScheduler
|
9 |
|
|
|
10 |
current_dir = Path(__file__).resolve().parent
|
11 |
duckdb_nsql_dir = current_dir / 'duckdb-nsql'
|
12 |
eval_dir = duckdb_nsql_dir / 'eval'
|
13 |
sys.path.extend([str(current_dir), str(duckdb_nsql_dir), str(eval_dir)])
|
14 |
|
|
|
15 |
from eval.predict import get_manifest, DefaultLoader, PROMPT_FORMATTERS, generate_sql
|
16 |
from eval.evaluate import evaluate, compute_metrics, get_to_print
|
17 |
from eval.evaluate import test_suite_evaluation, read_tables_json
|
|
|
19 |
|
20 |
AVAILABLE_PROMPT_FORMATS = list(PROMPT_FORMATTERS.keys())
|
21 |
|
22 |
+
prediction_folder = Path("prediction_results/")
|
23 |
+
evaluation_folder = Path("evaluation_results/")
|
24 |
+
|
25 |
+
file_uuid = uuid.uuid4()
|
26 |
+
|
27 |
+
prediction_scheduler = CommitScheduler(
|
28 |
+
repo_id="sql-console/duckdb-nsql-predictions",
|
29 |
+
repo_type="dataset",
|
30 |
+
folder_path=prediction_folder,
|
31 |
+
path_in_repo="data",
|
32 |
+
every=10,
|
33 |
+
)
|
34 |
+
|
35 |
+
evaluation_scheduler = CommitScheduler(
|
36 |
+
repo_id="sql-console/duckdb-nsql-scores",
|
37 |
+
repo_type="dataset",
|
38 |
+
folder_path=evaluation_folder,
|
39 |
+
path_in_repo="data",
|
40 |
+
every=10,
|
41 |
+
)
|
42 |
+
|
43 |
+
def save_prediction(inference_api, model_name, prompt_format, question, generated_sql):
|
44 |
+
prediction_file = prediction_folder / f"prediction_{file_uuid}.json"
|
45 |
+
prediction_folder.mkdir(parents=True, exist_ok=True)
|
46 |
+
with prediction_scheduler.lock:
|
47 |
+
with prediction_file.open("a") as f:
|
48 |
+
json.dump({
|
49 |
+
"inference_api": inference_api,
|
50 |
+
"model_name": model_name,
|
51 |
+
"prompt_format": prompt_format,
|
52 |
+
"question": question,
|
53 |
+
"generated_sql": generated_sql,
|
54 |
+
"timestamp": datetime.now().isoformat()
|
55 |
+
}, f)
|
56 |
+
|
57 |
+
def save_evaluation(inference_api, model_name, prompt_format, metrics):
|
58 |
+
evaluation_file = evaluation_folder / f"evaluation_{file_uuid}.json"
|
59 |
+
evaluation_folder.mkdir(parents=True, exist_ok=True)
|
60 |
+
with evaluation_scheduler.lock:
|
61 |
+
with evaluation_file.open("a") as f:
|
62 |
+
json.dump({
|
63 |
+
"inference_api": inference_api,
|
64 |
+
"model_name": model_name,
|
65 |
+
"prompt_format": prompt_format,
|
66 |
+
"metrics": metrics,
|
67 |
+
"timestamp": datetime.now().isoformat()
|
68 |
+
}, f)
|
69 |
+
|
70 |
def run_prediction(inference_api, model_name, prompt_format, output_file):
|
71 |
dataset_path = str(eval_dir / "data/dev.json")
|
72 |
table_meta_path = str(eval_dir / "data/tables.json")
|
|
|
108 |
else:
|
109 |
table_params = []
|
110 |
|
|
|
|
|
|
|
111 |
text_to_sql_inputs.append(TextToSQLParams(
|
112 |
instruction=question,
|
113 |
database=db_id,
|
|
|
118 |
generated_sqls = generate_sql(
|
119 |
manifest=manifest,
|
120 |
text_to_sql_in=text_to_sql_inputs,
|
121 |
+
retrieved_docs=[[] for _ in text_to_sql_inputs],
|
122 |
prompt_formatter=prompt_formatter,
|
123 |
stop_tokens=stop_tokens,
|
124 |
overwrite_manifest=overwrite_manifest,
|
|
|
129 |
)
|
130 |
|
131 |
# Save results
|
132 |
+
output_file.parent.mkdir(parents=True, exist_ok=True)
|
133 |
with output_file.open('w') as f:
|
134 |
for original_data, (sql, _) in zip(data, generated_sqls):
|
135 |
output = {**original_data, "pred": sql}
|
136 |
json.dump(output, f)
|
137 |
f.write('\n')
|
138 |
|
139 |
+
# Save prediction to dataset
|
140 |
+
save_prediction(inference_api, model_name, prompt_format, original_data["question"], sql)
|
141 |
+
|
142 |
yield f"Prediction completed. Results saved to {output_file}"
|
143 |
except Exception as e:
|
144 |
yield f"Prediction failed with error: {str(e)}"
|
|
|
210 |
categories=categories,
|
211 |
)
|
212 |
|
213 |
+
# Save evaluation results to dataset
|
214 |
+
save_evaluation(inference_api, model_name, prompt_format, metrics)
|
215 |
+
|
216 |
yield "Evaluation completed."
|
217 |
|
218 |
if metrics:
|