tdoehmen commited on
Commit
acfff07
·
1 Parent(s): cf3ce8d
Files changed (1) hide show
  1. app.py +118 -51
app.py CHANGED
@@ -1,76 +1,143 @@
1
  import gradio as gr
2
- import subprocess
 
3
  import os
4
- import re
 
5
  from datetime import datetime
 
6
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  def run_evaluation(model_name):
 
 
8
  results = []
9
 
10
- # Use the secret OpenRouter API key from the Hugging Face space
11
  if "OPENROUTER_API_KEY" not in os.environ:
12
  return "Error: OPENROUTER_API_KEY not found in environment variables."
13
 
14
  try:
15
- # Set up environment
16
- env = os.environ.copy()
17
- env["OPENROUTER_API_KEY"] = os.environ["OPENROUTER_API_KEY"]
18
-
19
- # Run inference
20
- current_date = datetime.now().strftime("%Y%m%d")
21
- inference_cmd = f"""
22
- cd duckdb-nsql/ &&
23
- python eval/predict.py \
24
- predict \
25
- eval/data/dev.json \
26
- eval/data/tables.json \
27
- --output-dir output/ \
28
- --stop-tokens ';' \
29
- --max-tokens 30000 \
30
- --overwrite-manifest \
31
- --manifest-client openrouter \
32
- --manifest-engine {model_name} \
33
- --prompt-format duckdbinstgraniteshort
34
- """
35
- inference_result = subprocess.run(inference_cmd, shell=True, check=True, capture_output=True, text=True, env=env)
36
- results.append("Inference completed.")
37
-
38
- # Extract JSON file path from inference output
39
- json_path_match = re.search(r'(.*\.json)', inference_result.stdout)
40
- if not json_path_match:
41
- raise ValueError("Could not find JSON file path in inference output")
42
- json_file = os.path.basename(json_path_match.group(1))
43
- results.append(f"Generated JSON file: {json_file}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  # Run evaluation
46
- eval_cmd = f"""
47
- cd duckdb-nsql/ &&
48
- python eval/evaluate.py evaluate \
49
- --gold eval/data/dev.json \
50
- --db eval/data/databases/ \
51
- --tables eval/data/tables.json \
52
- --output-dir output/ \
53
- --pred output/{json_file}
54
- """
55
- eval_result = subprocess.run(eval_cmd, shell=True, check=True, capture_output=True, text=True)
56
-
57
- # Extract and format metrics from eval output
58
- metrics = eval_result.stdout
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  if metrics:
60
- results.append(f"Evaluation completed:\n{metrics}")
 
 
61
  else:
62
- results.append("Evaluation completed, but couldn't get metrics.")
63
 
64
- except subprocess.CalledProcessError as e:
65
- results.append(f"Error occurred: {str(e)}")
66
- results.append(f"Command output: {e.output}")
67
  except Exception as e:
68
  results.append(f"An unexpected error occurred: {str(e)}")
69
 
70
  return "\n\n".join(results)
71
 
72
  with gr.Blocks() as demo:
73
- gr.Markdown("# DuckDB SQL Evaluation App (OpenRouter)")
74
 
75
  model_name = gr.Textbox(label="Model Name (e.g., qwen/qwen-2.5-72b-instruct)")
76
  start_btn = gr.Button("Start Evaluation")
 
1
  import gradio as gr
2
+ import spaces
3
+ import torch
4
  import os
5
+ import sys
6
+ from pathlib import Path
7
  from datetime import datetime
8
+ import json
9
 
10
+ # Add the duckdb-nsql directory to the Python path
11
+ sys.path.append('duckdb-nsql')
12
+
13
+ # Import necessary functions and classes from predict.py and evaluate.py
14
+ from eval.predict import cli as predict_cli, predict, console, get_manifest, DefaultLoader, PROMPT_FORMATTERS
15
+ from eval.evaluate import cli as evaluate_cli, evaluate, compute_metrics, get_to_print
16
+ from eval.evaluate import test_suite_evaluation, read_tables_json
17
+
18
+ zero = torch.Tensor([0]).cuda()
19
+ print(zero.device) # <-- 'cpu' 🤔
20
+
21
+ @spaces.GPU
22
  def run_evaluation(model_name):
23
+ print(zero.device) # <-- 'cuda:0' 🤗
24
+
25
  results = []
26
 
 
27
  if "OPENROUTER_API_KEY" not in os.environ:
28
  return "Error: OPENROUTER_API_KEY not found in environment variables."
29
 
30
  try:
31
+ # Set up the arguments similar to the CLI in predict.py
32
+ dataset_path = "eval/data/dev.json"
33
+ table_meta_path = "eval/data/tables.json"
34
+ output_dir = "output/"
35
+ prompt_format = "duckdbinstgraniteshort"
36
+ stop_tokens = [';']
37
+ max_tokens = 30000
38
+ temperature = 0.1
39
+ num_beams = -1
40
+ manifest_client = "openrouter"
41
+ manifest_engine = model_name
42
+ manifest_connection = "http://localhost:5000"
43
+ overwrite_manifest = True
44
+ parallel = False
45
+
46
+ # Initialize necessary components
47
+ data_formatter = DefaultLoader()
48
+ prompt_formatter = PROMPT_FORMATTERS[prompt_format]()
49
+
50
+ # Load manifest
51
+ manifest = get_manifest(
52
+ manifest_client=manifest_client,
53
+ manifest_connection=manifest_connection,
54
+ manifest_engine=manifest_engine,
55
+ )
56
+
57
+ results.append(f"Using model: {manifest_engine}")
58
+
59
+ # Load data and metadata
60
+ results.append("Loading metadata and data...")
61
+ db_to_tables = data_formatter.load_table_metadata(table_meta_path)
62
+ data = data_formatter.load_data(dataset_path)
63
+
64
+ # Generate output filename
65
+ date_today = datetime.now().strftime("%y-%m-%d")
66
+ pred_filename = f"{prompt_format}_0docs_{manifest_engine.split('/')[-1]}_{Path(dataset_path).stem}_{date_today}.json"
67
+ pred_path = Path(output_dir) / pred_filename
68
+ results.append(f"Prediction will be saved to: {pred_path}")
69
+
70
+ # Run prediction
71
+ results.append("Starting prediction...")
72
+ predict(
73
+ dataset_path=dataset_path,
74
+ table_meta_path=table_meta_path,
75
+ output_dir=output_dir,
76
+ prompt_format=prompt_format,
77
+ stop_tokens=stop_tokens,
78
+ max_tokens=max_tokens,
79
+ temperature=temperature,
80
+ num_beams=num_beams,
81
+ manifest_client=manifest_client,
82
+ manifest_engine=manifest_engine,
83
+ manifest_connection=manifest_connection,
84
+ overwrite_manifest=overwrite_manifest,
85
+ parallel=parallel
86
+ )
87
+ results.append("Prediction completed.")
88
 
89
  # Run evaluation
90
+ results.append("Starting evaluation...")
91
+
92
+ # Set up evaluation arguments
93
+ gold_path = Path(dataset_path)
94
+ db_dir = "eval/data/databases/"
95
+ tables_path = Path(table_meta_path)
96
+
97
+ kmaps = test_suite_evaluation.build_foreign_key_map_from_json(str(tables_path))
98
+ db_schemas = read_tables_json(str(tables_path))
99
+
100
+ gold_sqls_dict = json.load(gold_path.open("r", encoding="utf-8"))
101
+ pred_sqls_dict = [json.loads(l) for l in pred_path.open("r").readlines()]
102
+
103
+ gold_sqls = [p.get("query", p.get("sql", "")) for p in gold_sqls_dict]
104
+ setup_sqls = [p["setup_sql"] for p in gold_sqls_dict]
105
+ validate_sqls = [p["validation_sql"] for p in gold_sqls_dict]
106
+ gold_dbs = [p.get("db_id", p.get("db", "")) for p in gold_sqls_dict]
107
+ pred_sqls = [p["pred"] for p in pred_sqls_dict]
108
+ categories = [p.get("category", "") for p in gold_sqls_dict]
109
+
110
+ metrics = compute_metrics(
111
+ gold_sqls=gold_sqls,
112
+ pred_sqls=pred_sqls,
113
+ gold_dbs=gold_dbs,
114
+ setup_sqls=setup_sqls,
115
+ validate_sqls=validate_sqls,
116
+ kmaps=kmaps,
117
+ db_schemas=db_schemas,
118
+ database_dir=db_dir,
119
+ lowercase_schema_match=False,
120
+ model_name=model_name,
121
+ categories=categories,
122
+ )
123
+
124
+ results.append("Evaluation completed.")
125
+
126
+ # Format and add the evaluation metrics to the results
127
  if metrics:
128
+ to_print = get_to_print({"all": metrics}, "all", model_name, len(gold_sqls))
129
+ formatted_metrics = "\n".join([f"{k}: {v}" for k, v in to_print.items() if k not in ["slice", "model"]])
130
+ results.append(f"Evaluation metrics:\n{formatted_metrics}")
131
  else:
132
+ results.append("No evaluation metrics returned.")
133
 
 
 
 
134
  except Exception as e:
135
  results.append(f"An unexpected error occurred: {str(e)}")
136
 
137
  return "\n\n".join(results)
138
 
139
  with gr.Blocks() as demo:
140
+ gr.Markdown("# DuckDB SQL Evaluation App")
141
 
142
  model_name = gr.Textbox(label="Model Name (e.g., qwen/qwen-2.5-72b-instruct)")
143
  start_btn = gr.Button("Start Evaluation")