yolo
Browse files
app.py
CHANGED
@@ -1,76 +1,143 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
3 |
import os
|
4 |
-
import
|
|
|
5 |
from datetime import datetime
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def run_evaluation(model_name):
|
|
|
|
|
8 |
results = []
|
9 |
|
10 |
-
# Use the secret OpenRouter API key from the Hugging Face space
|
11 |
if "OPENROUTER_API_KEY" not in os.environ:
|
12 |
return "Error: OPENROUTER_API_KEY not found in environment variables."
|
13 |
|
14 |
try:
|
15 |
-
# Set up
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# Run evaluation
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
if metrics:
|
60 |
-
|
|
|
|
|
61 |
else:
|
62 |
-
results.append("
|
63 |
|
64 |
-
except subprocess.CalledProcessError as e:
|
65 |
-
results.append(f"Error occurred: {str(e)}")
|
66 |
-
results.append(f"Command output: {e.output}")
|
67 |
except Exception as e:
|
68 |
results.append(f"An unexpected error occurred: {str(e)}")
|
69 |
|
70 |
return "\n\n".join(results)
|
71 |
|
72 |
with gr.Blocks() as demo:
|
73 |
-
gr.Markdown("# DuckDB SQL Evaluation App
|
74 |
|
75 |
model_name = gr.Textbox(label="Model Name (e.g., qwen/qwen-2.5-72b-instruct)")
|
76 |
start_btn = gr.Button("Start Evaluation")
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import torch
|
4 |
import os
|
5 |
+
import sys
|
6 |
+
from pathlib import Path
|
7 |
from datetime import datetime
|
8 |
+
import json
|
9 |
|
10 |
+
# Add the duckdb-nsql directory to the Python path
|
11 |
+
sys.path.append('duckdb-nsql')
|
12 |
+
|
13 |
+
# Import necessary functions and classes from predict.py and evaluate.py
|
14 |
+
from eval.predict import cli as predict_cli, predict, console, get_manifest, DefaultLoader, PROMPT_FORMATTERS
|
15 |
+
from eval.evaluate import cli as evaluate_cli, evaluate, compute_metrics, get_to_print
|
16 |
+
from eval.evaluate import test_suite_evaluation, read_tables_json
|
17 |
+
|
18 |
+
zero = torch.Tensor([0]).cuda()
|
19 |
+
print(zero.device) # <-- 'cpu' 🤔
|
20 |
+
|
21 |
+
@spaces.GPU
|
22 |
def run_evaluation(model_name):
|
23 |
+
print(zero.device) # <-- 'cuda:0' 🤗
|
24 |
+
|
25 |
results = []
|
26 |
|
|
|
27 |
if "OPENROUTER_API_KEY" not in os.environ:
|
28 |
return "Error: OPENROUTER_API_KEY not found in environment variables."
|
29 |
|
30 |
try:
|
31 |
+
# Set up the arguments similar to the CLI in predict.py
|
32 |
+
dataset_path = "eval/data/dev.json"
|
33 |
+
table_meta_path = "eval/data/tables.json"
|
34 |
+
output_dir = "output/"
|
35 |
+
prompt_format = "duckdbinstgraniteshort"
|
36 |
+
stop_tokens = [';']
|
37 |
+
max_tokens = 30000
|
38 |
+
temperature = 0.1
|
39 |
+
num_beams = -1
|
40 |
+
manifest_client = "openrouter"
|
41 |
+
manifest_engine = model_name
|
42 |
+
manifest_connection = "http://localhost:5000"
|
43 |
+
overwrite_manifest = True
|
44 |
+
parallel = False
|
45 |
+
|
46 |
+
# Initialize necessary components
|
47 |
+
data_formatter = DefaultLoader()
|
48 |
+
prompt_formatter = PROMPT_FORMATTERS[prompt_format]()
|
49 |
+
|
50 |
+
# Load manifest
|
51 |
+
manifest = get_manifest(
|
52 |
+
manifest_client=manifest_client,
|
53 |
+
manifest_connection=manifest_connection,
|
54 |
+
manifest_engine=manifest_engine,
|
55 |
+
)
|
56 |
+
|
57 |
+
results.append(f"Using model: {manifest_engine}")
|
58 |
+
|
59 |
+
# Load data and metadata
|
60 |
+
results.append("Loading metadata and data...")
|
61 |
+
db_to_tables = data_formatter.load_table_metadata(table_meta_path)
|
62 |
+
data = data_formatter.load_data(dataset_path)
|
63 |
+
|
64 |
+
# Generate output filename
|
65 |
+
date_today = datetime.now().strftime("%y-%m-%d")
|
66 |
+
pred_filename = f"{prompt_format}_0docs_{manifest_engine.split('/')[-1]}_{Path(dataset_path).stem}_{date_today}.json"
|
67 |
+
pred_path = Path(output_dir) / pred_filename
|
68 |
+
results.append(f"Prediction will be saved to: {pred_path}")
|
69 |
+
|
70 |
+
# Run prediction
|
71 |
+
results.append("Starting prediction...")
|
72 |
+
predict(
|
73 |
+
dataset_path=dataset_path,
|
74 |
+
table_meta_path=table_meta_path,
|
75 |
+
output_dir=output_dir,
|
76 |
+
prompt_format=prompt_format,
|
77 |
+
stop_tokens=stop_tokens,
|
78 |
+
max_tokens=max_tokens,
|
79 |
+
temperature=temperature,
|
80 |
+
num_beams=num_beams,
|
81 |
+
manifest_client=manifest_client,
|
82 |
+
manifest_engine=manifest_engine,
|
83 |
+
manifest_connection=manifest_connection,
|
84 |
+
overwrite_manifest=overwrite_manifest,
|
85 |
+
parallel=parallel
|
86 |
+
)
|
87 |
+
results.append("Prediction completed.")
|
88 |
|
89 |
# Run evaluation
|
90 |
+
results.append("Starting evaluation...")
|
91 |
+
|
92 |
+
# Set up evaluation arguments
|
93 |
+
gold_path = Path(dataset_path)
|
94 |
+
db_dir = "eval/data/databases/"
|
95 |
+
tables_path = Path(table_meta_path)
|
96 |
+
|
97 |
+
kmaps = test_suite_evaluation.build_foreign_key_map_from_json(str(tables_path))
|
98 |
+
db_schemas = read_tables_json(str(tables_path))
|
99 |
+
|
100 |
+
gold_sqls_dict = json.load(gold_path.open("r", encoding="utf-8"))
|
101 |
+
pred_sqls_dict = [json.loads(l) for l in pred_path.open("r").readlines()]
|
102 |
+
|
103 |
+
gold_sqls = [p.get("query", p.get("sql", "")) for p in gold_sqls_dict]
|
104 |
+
setup_sqls = [p["setup_sql"] for p in gold_sqls_dict]
|
105 |
+
validate_sqls = [p["validation_sql"] for p in gold_sqls_dict]
|
106 |
+
gold_dbs = [p.get("db_id", p.get("db", "")) for p in gold_sqls_dict]
|
107 |
+
pred_sqls = [p["pred"] for p in pred_sqls_dict]
|
108 |
+
categories = [p.get("category", "") for p in gold_sqls_dict]
|
109 |
+
|
110 |
+
metrics = compute_metrics(
|
111 |
+
gold_sqls=gold_sqls,
|
112 |
+
pred_sqls=pred_sqls,
|
113 |
+
gold_dbs=gold_dbs,
|
114 |
+
setup_sqls=setup_sqls,
|
115 |
+
validate_sqls=validate_sqls,
|
116 |
+
kmaps=kmaps,
|
117 |
+
db_schemas=db_schemas,
|
118 |
+
database_dir=db_dir,
|
119 |
+
lowercase_schema_match=False,
|
120 |
+
model_name=model_name,
|
121 |
+
categories=categories,
|
122 |
+
)
|
123 |
+
|
124 |
+
results.append("Evaluation completed.")
|
125 |
+
|
126 |
+
# Format and add the evaluation metrics to the results
|
127 |
if metrics:
|
128 |
+
to_print = get_to_print({"all": metrics}, "all", model_name, len(gold_sqls))
|
129 |
+
formatted_metrics = "\n".join([f"{k}: {v}" for k, v in to_print.items() if k not in ["slice", "model"]])
|
130 |
+
results.append(f"Evaluation metrics:\n{formatted_metrics}")
|
131 |
else:
|
132 |
+
results.append("No evaluation metrics returned.")
|
133 |
|
|
|
|
|
|
|
134 |
except Exception as e:
|
135 |
results.append(f"An unexpected error occurred: {str(e)}")
|
136 |
|
137 |
return "\n\n".join(results)
|
138 |
|
139 |
with gr.Blocks() as demo:
|
140 |
+
gr.Markdown("# DuckDB SQL Evaluation App")
|
141 |
|
142 |
model_name = gr.Textbox(label="Model Name (e.g., qwen/qwen-2.5-72b-instruct)")
|
143 |
start_btn = gr.Button("Start Evaluation")
|