import gradio as gr import torch from ultralytics import YOLO torch.hub.download_url_to_file( 'http://www.imesclub.org/images/stories/arabidentity.jpeg', 'one.jpg') torch.hub.download_url_to_file( 'https://lp-cms-production.imgix.net/2023-08/GettyImages-1224548888-16.9.jpg', 'two.jpg') torch.hub.download_url_to_file( 'https://s.wsj.net/public/resources/images/OB-EQ974_diwali_G_20091014112400.jpg', 'three.jpg') def handle_classify(image=None): """This function performs YOLOv8 object detection on the given image. Args: image (gr.inputs.Image, optional): Input image to detect objects on. Defaults to None. """ if not image: return "No image found" model_path = "racist2.0.pt" model = YOLO(model_path) results = model(image) result = results[0] top5 = [[result.names[class_index], result.probs.top5conf.tolist()[rank]] for class_index, rank in zip(result.probs.top5, range(5))] print(top5) return "\n".join(["\t".join(row) for row in top5]) inputs = [ gr.Image(type="filepath", label="Input Image"), ] outputs = gr.Textbox() title = "Racist model v2" examples = [['one.jpg'], ['two.jpg'], ['three.jpg']] yolo_app = gr.Interface( fn=handle_classify, inputs=inputs, outputs=outputs, title=title, examples=examples, cache_examples=True, ) # Launch the Gradio interface in debug mode with queue enabled yolo_app.launch(debug=True, enable_queue=True)