Upload 20 files
Browse files- cv2/data/__init__.py +3 -0
- cv2/data/__pycache__/__init__.cpython-311.pyc +0 -0
- cv2/data/haarcascade_eye.xml +0 -0
- cv2/data/haarcascade_eye_tree_eyeglasses.xml +0 -0
- cv2/data/haarcascade_frontalcatface.xml +0 -0
- cv2/data/haarcascade_frontalcatface_extended.xml +0 -0
- cv2/data/haarcascade_frontalface_alt.xml +0 -0
- cv2/data/haarcascade_frontalface_alt2.xml +0 -0
- cv2/data/haarcascade_frontalface_alt_tree.xml +0 -0
- cv2/data/haarcascade_frontalface_default.xml +0 -0
- cv2/data/haarcascade_fullbody.xml +0 -0
- cv2/data/haarcascade_lefteye_2splits.xml +0 -0
- cv2/data/haarcascade_license_plate_rus_16stages.xml +1404 -0
- cv2/data/haarcascade_lowerbody.xml +0 -0
- cv2/data/haarcascade_profileface.xml +0 -0
- cv2/data/haarcascade_righteye_2splits.xml +0 -0
- cv2/data/haarcascade_russian_plate_number.xml +2656 -0
- cv2/data/haarcascade_smile.xml +0 -0
- cv2/data/haarcascade_upperbody.xml +0 -0
- cv2/detail/__init__.pyi +598 -0
cv2/data/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
haarcascades = os.path.join(os.path.dirname(__file__), "")
|
cv2/data/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (361 Bytes). View file
|
|
cv2/data/haarcascade_eye.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cv2/data/haarcascade_eye_tree_eyeglasses.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cv2/data/haarcascade_frontalcatface.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cv2/data/haarcascade_frontalcatface_extended.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cv2/data/haarcascade_frontalface_alt.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cv2/data/haarcascade_frontalface_alt2.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cv2/data/haarcascade_frontalface_alt_tree.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cv2/data/haarcascade_frontalface_default.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cv2/data/haarcascade_fullbody.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cv2/data/haarcascade_lefteye_2splits.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cv2/data/haarcascade_license_plate_rus_16stages.xml
ADDED
@@ -0,0 +1,1404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<opencv_storage>
|
3 |
+
<!-- Automatically converted from haarcascade2, window size = 64x16 -->
|
4 |
+
<haarcascade_pltzzz64x16_16STG type_id="opencv-haar-classifier">
|
5 |
+
<size>
|
6 |
+
64 16</size>
|
7 |
+
<stages>
|
8 |
+
<_>
|
9 |
+
<!-- stage 0 -->
|
10 |
+
<trees>
|
11 |
+
<_>
|
12 |
+
<!-- tree 0 -->
|
13 |
+
<_>
|
14 |
+
<!-- root node -->
|
15 |
+
<feature>
|
16 |
+
<rects>
|
17 |
+
<_>
|
18 |
+
32 2 8 6 -1.</_>
|
19 |
+
<_>
|
20 |
+
32 4 8 2 3.</_></rects>
|
21 |
+
<tilted>0</tilted></feature>
|
22 |
+
<threshold>1.6915600746870041e-002</threshold>
|
23 |
+
<left_val>-9.5547717809677124e-001</left_val>
|
24 |
+
<right_val>8.9129137992858887e-001</right_val></_></_>
|
25 |
+
<_>
|
26 |
+
<!-- tree 1 -->
|
27 |
+
<_>
|
28 |
+
<!-- root node -->
|
29 |
+
<feature>
|
30 |
+
<rects>
|
31 |
+
<_>
|
32 |
+
0 4 6 10 -1.</_>
|
33 |
+
<_>
|
34 |
+
3 4 3 10 2.</_></rects>
|
35 |
+
<tilted>0</tilted></feature>
|
36 |
+
<threshold>2.4228349328041077e-002</threshold>
|
37 |
+
<left_val>-9.2089319229125977e-001</left_val>
|
38 |
+
<right_val>8.8723921775817871e-001</right_val></_></_>
|
39 |
+
<_>
|
40 |
+
<!-- tree 2 -->
|
41 |
+
<_>
|
42 |
+
<!-- root node -->
|
43 |
+
<feature>
|
44 |
+
<rects>
|
45 |
+
<_>
|
46 |
+
55 0 8 6 -1.</_>
|
47 |
+
<_>
|
48 |
+
55 0 4 3 2.</_>
|
49 |
+
<_>
|
50 |
+
59 3 4 3 2.</_></rects>
|
51 |
+
<tilted>0</tilted></feature>
|
52 |
+
<threshold>-1.0168660432100296e-002</threshold>
|
53 |
+
<left_val>8.8940089941024780e-001</left_val>
|
54 |
+
<right_val>-7.7847331762313843e-001</right_val></_></_>
|
55 |
+
<_>
|
56 |
+
<!-- tree 3 -->
|
57 |
+
<_>
|
58 |
+
<!-- root node -->
|
59 |
+
<feature>
|
60 |
+
<rects>
|
61 |
+
<_>
|
62 |
+
44 7 4 9 -1.</_>
|
63 |
+
<_>
|
64 |
+
44 10 4 3 3.</_></rects>
|
65 |
+
<tilted>0</tilted></feature>
|
66 |
+
<threshold>2.0863260142505169e-003</threshold>
|
67 |
+
<left_val>-8.7998157739639282e-001</left_val>
|
68 |
+
<right_val>5.8651781082153320e-001</right_val></_></_></trees>
|
69 |
+
<stage_threshold>-2.0683259963989258e+000</stage_threshold>
|
70 |
+
<parent>-1</parent>
|
71 |
+
<next>-1</next></_>
|
72 |
+
<_>
|
73 |
+
<!-- stage 1 -->
|
74 |
+
<trees>
|
75 |
+
<_>
|
76 |
+
<!-- tree 0 -->
|
77 |
+
<_>
|
78 |
+
<!-- root node -->
|
79 |
+
<feature>
|
80 |
+
<rects>
|
81 |
+
<_>
|
82 |
+
29 1 16 4 -1.</_>
|
83 |
+
<_>
|
84 |
+
29 3 16 2 2.</_></rects>
|
85 |
+
<tilted>0</tilted></feature>
|
86 |
+
<threshold>2.9062159359455109e-002</threshold>
|
87 |
+
<left_val>-8.7765061855316162e-001</left_val>
|
88 |
+
<right_val>8.5373121500015259e-001</right_val></_></_>
|
89 |
+
<_>
|
90 |
+
<!-- tree 1 -->
|
91 |
+
<_>
|
92 |
+
<!-- root node -->
|
93 |
+
<feature>
|
94 |
+
<rects>
|
95 |
+
<_>
|
96 |
+
0 5 9 8 -1.</_>
|
97 |
+
<_>
|
98 |
+
3 5 3 8 3.</_></rects>
|
99 |
+
<tilted>0</tilted></feature>
|
100 |
+
<threshold>2.3903399705886841e-002</threshold>
|
101 |
+
<left_val>-9.2079448699951172e-001</left_val>
|
102 |
+
<right_val>7.5155001878738403e-001</right_val></_></_>
|
103 |
+
<_>
|
104 |
+
<!-- tree 2 -->
|
105 |
+
<_>
|
106 |
+
<!-- root node -->
|
107 |
+
<feature>
|
108 |
+
<rects>
|
109 |
+
<_>
|
110 |
+
44 0 20 14 -1.</_>
|
111 |
+
<_>
|
112 |
+
44 0 10 7 2.</_>
|
113 |
+
<_>
|
114 |
+
54 7 10 7 2.</_></rects>
|
115 |
+
<tilted>0</tilted></feature>
|
116 |
+
<threshold>-3.5404648631811142e-002</threshold>
|
117 |
+
<left_val>6.7834627628326416e-001</left_val>
|
118 |
+
<right_val>-9.0937072038650513e-001</right_val></_></_>
|
119 |
+
<_>
|
120 |
+
<!-- tree 3 -->
|
121 |
+
<_>
|
122 |
+
<!-- root node -->
|
123 |
+
<feature>
|
124 |
+
<rects>
|
125 |
+
<_>
|
126 |
+
41 7 6 9 -1.</_>
|
127 |
+
<_>
|
128 |
+
43 7 2 9 3.</_></rects>
|
129 |
+
<tilted>0</tilted></feature>
|
130 |
+
<threshold>6.2988721765577793e-003</threshold>
|
131 |
+
<left_val>-8.1054258346557617e-001</left_val>
|
132 |
+
<right_val>5.8985030651092529e-001</right_val></_></_>
|
133 |
+
<_>
|
134 |
+
<!-- tree 4 -->
|
135 |
+
<_>
|
136 |
+
<!-- root node -->
|
137 |
+
<feature>
|
138 |
+
<rects>
|
139 |
+
<_>
|
140 |
+
0 4 21 4 -1.</_>
|
141 |
+
<_>
|
142 |
+
7 4 7 4 3.</_></rects>
|
143 |
+
<tilted>0</tilted></feature>
|
144 |
+
<threshold>3.4959490876644850e-003</threshold>
|
145 |
+
<left_val>-9.7632282972335815e-001</left_val>
|
146 |
+
<right_val>4.5473039150238037e-001</right_val></_></_></trees>
|
147 |
+
<stage_threshold>-1.6632349491119385e+000</stage_threshold>
|
148 |
+
<parent>0</parent>
|
149 |
+
<next>-1</next></_>
|
150 |
+
<_>
|
151 |
+
<!-- stage 2 -->
|
152 |
+
<trees>
|
153 |
+
<_>
|
154 |
+
<!-- tree 0 -->
|
155 |
+
<_>
|
156 |
+
<!-- root node -->
|
157 |
+
<feature>
|
158 |
+
<rects>
|
159 |
+
<_>
|
160 |
+
31 2 11 6 -1.</_>
|
161 |
+
<_>
|
162 |
+
31 4 11 2 3.</_></rects>
|
163 |
+
<tilted>0</tilted></feature>
|
164 |
+
<threshold>2.3864099755883217e-002</threshold>
|
165 |
+
<left_val>-9.3137168884277344e-001</left_val>
|
166 |
+
<right_val>8.2478952407836914e-001</right_val></_></_>
|
167 |
+
<_>
|
168 |
+
<!-- tree 1 -->
|
169 |
+
<_>
|
170 |
+
<!-- root node -->
|
171 |
+
<feature>
|
172 |
+
<rects>
|
173 |
+
<_>
|
174 |
+
56 3 6 11 -1.</_>
|
175 |
+
<_>
|
176 |
+
59 3 3 11 2.</_></rects>
|
177 |
+
<tilted>0</tilted></feature>
|
178 |
+
<threshold>-2.5775209069252014e-002</threshold>
|
179 |
+
<left_val>8.5526448488235474e-001</left_val>
|
180 |
+
<right_val>-8.7574672698974609e-001</right_val></_></_>
|
181 |
+
<_>
|
182 |
+
<!-- tree 2 -->
|
183 |
+
<_>
|
184 |
+
<!-- root node -->
|
185 |
+
<feature>
|
186 |
+
<rects>
|
187 |
+
<_>
|
188 |
+
32 14 32 2 -1.</_>
|
189 |
+
<_>
|
190 |
+
32 15 32 1 2.</_></rects>
|
191 |
+
<tilted>0</tilted></feature>
|
192 |
+
<threshold>-1.0646049864590168e-002</threshold>
|
193 |
+
<left_val>8.5167151689529419e-001</left_val>
|
194 |
+
<right_val>-6.7789041996002197e-001</right_val></_></_>
|
195 |
+
<_>
|
196 |
+
<!-- tree 3 -->
|
197 |
+
<_>
|
198 |
+
<!-- root node -->
|
199 |
+
<feature>
|
200 |
+
<rects>
|
201 |
+
<_>
|
202 |
+
0 2 8 14 -1.</_>
|
203 |
+
<_>
|
204 |
+
4 2 4 14 2.</_></rects>
|
205 |
+
<tilted>0</tilted></feature>
|
206 |
+
<threshold>2.7000989764928818e-002</threshold>
|
207 |
+
<left_val>-8.0041092634201050e-001</left_val>
|
208 |
+
<right_val>6.4893317222595215e-001</right_val></_></_>
|
209 |
+
<_>
|
210 |
+
<!-- tree 4 -->
|
211 |
+
<_>
|
212 |
+
<!-- root node -->
|
213 |
+
<feature>
|
214 |
+
<rects>
|
215 |
+
<_>
|
216 |
+
19 0 22 6 -1.</_>
|
217 |
+
<_>
|
218 |
+
19 0 11 3 2.</_>
|
219 |
+
<_>
|
220 |
+
30 3 11 3 2.</_></rects>
|
221 |
+
<tilted>0</tilted></feature>
|
222 |
+
<threshold>5.2989721298217773e-003</threshold>
|
223 |
+
<left_val>-9.5342522859573364e-001</left_val>
|
224 |
+
<right_val>5.0140267610549927e-001</right_val></_></_></trees>
|
225 |
+
<stage_threshold>-1.3346730470657349e+000</stage_threshold>
|
226 |
+
<parent>1</parent>
|
227 |
+
<next>-1</next></_>
|
228 |
+
<_>
|
229 |
+
<!-- stage 3 -->
|
230 |
+
<trees>
|
231 |
+
<_>
|
232 |
+
<!-- tree 0 -->
|
233 |
+
<_>
|
234 |
+
<!-- root node -->
|
235 |
+
<feature>
|
236 |
+
<rects>
|
237 |
+
<_>
|
238 |
+
56 0 6 6 -1.</_>
|
239 |
+
<_>
|
240 |
+
56 0 3 3 2.</_>
|
241 |
+
<_>
|
242 |
+
59 3 3 3 2.</_></rects>
|
243 |
+
<tilted>0</tilted></feature>
|
244 |
+
<threshold>-6.9233630783855915e-003</threshold>
|
245 |
+
<left_val>8.2654470205307007e-001</left_val>
|
246 |
+
<right_val>-8.5396027565002441e-001</right_val></_></_>
|
247 |
+
<_>
|
248 |
+
<!-- tree 1 -->
|
249 |
+
<_>
|
250 |
+
<!-- root node -->
|
251 |
+
<feature>
|
252 |
+
<rects>
|
253 |
+
<_>
|
254 |
+
32 0 14 12 -1.</_>
|
255 |
+
<_>
|
256 |
+
32 0 7 6 2.</_>
|
257 |
+
<_>
|
258 |
+
39 6 7 6 2.</_></rects>
|
259 |
+
<tilted>0</tilted></feature>
|
260 |
+
<threshold>1.2539249658584595e-001</threshold>
|
261 |
+
<left_val>-1.2996139936149120e-002</left_val>
|
262 |
+
<right_val>-3.2377028808593750e+003</right_val></_></_>
|
263 |
+
<_>
|
264 |
+
<!-- tree 2 -->
|
265 |
+
<_>
|
266 |
+
<!-- root node -->
|
267 |
+
<feature>
|
268 |
+
<rects>
|
269 |
+
<_>
|
270 |
+
2 1 43 4 -1.</_>
|
271 |
+
<_>
|
272 |
+
2 3 43 2 2.</_></rects>
|
273 |
+
<tilted>0</tilted></feature>
|
274 |
+
<threshold>6.3474893569946289e-002</threshold>
|
275 |
+
<left_val>-6.4648061990737915e-001</left_val>
|
276 |
+
<right_val>8.2302427291870117e-001</right_val></_></_>
|
277 |
+
<_>
|
278 |
+
<!-- tree 3 -->
|
279 |
+
<_>
|
280 |
+
<!-- root node -->
|
281 |
+
<feature>
|
282 |
+
<rects>
|
283 |
+
<_>
|
284 |
+
34 10 30 5 -1.</_>
|
285 |
+
<_>
|
286 |
+
44 10 10 5 3.</_></rects>
|
287 |
+
<tilted>0</tilted></feature>
|
288 |
+
<threshold>4.2217150330543518e-002</threshold>
|
289 |
+
<left_val>-7.5190877914428711e-001</left_val>
|
290 |
+
<right_val>6.3705182075500488e-001</right_val></_></_>
|
291 |
+
<_>
|
292 |
+
<!-- tree 4 -->
|
293 |
+
<_>
|
294 |
+
<!-- root node -->
|
295 |
+
<feature>
|
296 |
+
<rects>
|
297 |
+
<_>
|
298 |
+
0 9 9 5 -1.</_>
|
299 |
+
<_>
|
300 |
+
3 9 3 5 3.</_></rects>
|
301 |
+
<tilted>0</tilted></feature>
|
302 |
+
<threshold>2.0000640302896500e-002</threshold>
|
303 |
+
<left_val>-6.2077498435974121e-001</left_val>
|
304 |
+
<right_val>6.1317932605743408e-001</right_val></_></_></trees>
|
305 |
+
<stage_threshold>-1.6521669626235962e+000</stage_threshold>
|
306 |
+
<parent>2</parent>
|
307 |
+
<next>-1</next></_>
|
308 |
+
<_>
|
309 |
+
<!-- stage 4 -->
|
310 |
+
<trees>
|
311 |
+
<_>
|
312 |
+
<!-- tree 0 -->
|
313 |
+
<_>
|
314 |
+
<!-- root node -->
|
315 |
+
<feature>
|
316 |
+
<rects>
|
317 |
+
<_>
|
318 |
+
2 1 43 6 -1.</_>
|
319 |
+
<_>
|
320 |
+
2 3 43 2 3.</_></rects>
|
321 |
+
<tilted>0</tilted></feature>
|
322 |
+
<threshold>9.2297486960887909e-002</threshold>
|
323 |
+
<left_val>-7.2764229774475098e-001</left_val>
|
324 |
+
<right_val>8.0554759502410889e-001</right_val></_></_>
|
325 |
+
<_>
|
326 |
+
<!-- tree 1 -->
|
327 |
+
<_>
|
328 |
+
<!-- root node -->
|
329 |
+
<feature>
|
330 |
+
<rects>
|
331 |
+
<_>
|
332 |
+
53 4 9 8 -1.</_>
|
333 |
+
<_>
|
334 |
+
56 4 3 8 3.</_></rects>
|
335 |
+
<tilted>0</tilted></feature>
|
336 |
+
<threshold>2.7613969519734383e-002</threshold>
|
337 |
+
<left_val>-7.0769268274307251e-001</left_val>
|
338 |
+
<right_val>7.3315787315368652e-001</right_val></_></_>
|
339 |
+
<_>
|
340 |
+
<!-- tree 2 -->
|
341 |
+
<_>
|
342 |
+
<!-- root node -->
|
343 |
+
<feature>
|
344 |
+
<rects>
|
345 |
+
<_>
|
346 |
+
36 4 14 8 -1.</_>
|
347 |
+
<_>
|
348 |
+
36 4 7 4 2.</_>
|
349 |
+
<_>
|
350 |
+
43 8 7 4 2.</_></rects>
|
351 |
+
<tilted>0</tilted></feature>
|
352 |
+
<threshold>1.2465449981391430e-002</threshold>
|
353 |
+
<left_val>-8.4359270334243774e-001</left_val>
|
354 |
+
<right_val>5.7046437263488770e-001</right_val></_></_>
|
355 |
+
<_>
|
356 |
+
<!-- tree 3 -->
|
357 |
+
<_>
|
358 |
+
<!-- root node -->
|
359 |
+
<feature>
|
360 |
+
<rects>
|
361 |
+
<_>
|
362 |
+
14 14 49 2 -1.</_>
|
363 |
+
<_>
|
364 |
+
14 15 49 1 2.</_></rects>
|
365 |
+
<tilted>0</tilted></feature>
|
366 |
+
<threshold>-2.3886829614639282e-002</threshold>
|
367 |
+
<left_val>8.2656508684158325e-001</left_val>
|
368 |
+
<right_val>-5.2783298492431641e-001</right_val></_></_></trees>
|
369 |
+
<stage_threshold>-1.4523630142211914e+000</stage_threshold>
|
370 |
+
<parent>3</parent>
|
371 |
+
<next>-1</next></_>
|
372 |
+
<_>
|
373 |
+
<!-- stage 5 -->
|
374 |
+
<trees>
|
375 |
+
<_>
|
376 |
+
<!-- tree 0 -->
|
377 |
+
<_>
|
378 |
+
<!-- root node -->
|
379 |
+
<feature>
|
380 |
+
<rects>
|
381 |
+
<_>
|
382 |
+
0 5 4 9 -1.</_>
|
383 |
+
<_>
|
384 |
+
2 5 2 9 2.</_></rects>
|
385 |
+
<tilted>0</tilted></feature>
|
386 |
+
<threshold>1.8821349367499352e-002</threshold>
|
387 |
+
<left_val>-8.1122857332229614e-001</left_val>
|
388 |
+
<right_val>6.9127470254898071e-001</right_val></_></_>
|
389 |
+
<_>
|
390 |
+
<!-- tree 1 -->
|
391 |
+
<_>
|
392 |
+
<!-- root node -->
|
393 |
+
<feature>
|
394 |
+
<rects>
|
395 |
+
<_>
|
396 |
+
21 1 38 4 -1.</_>
|
397 |
+
<_>
|
398 |
+
21 3 38 2 2.</_></rects>
|
399 |
+
<tilted>0</tilted></feature>
|
400 |
+
<threshold>6.1703320592641830e-002</threshold>
|
401 |
+
<left_val>-7.6482647657394409e-001</left_val>
|
402 |
+
<right_val>6.4212161302566528e-001</right_val></_></_>
|
403 |
+
<_>
|
404 |
+
<!-- tree 2 -->
|
405 |
+
<_>
|
406 |
+
<!-- root node -->
|
407 |
+
<feature>
|
408 |
+
<rects>
|
409 |
+
<_>
|
410 |
+
44 12 18 3 -1.</_>
|
411 |
+
<_>
|
412 |
+
53 12 9 3 2.</_></rects>
|
413 |
+
<tilted>0</tilted></feature>
|
414 |
+
<threshold>-1.6298670321702957e-002</threshold>
|
415 |
+
<left_val>5.0207728147506714e-001</left_val>
|
416 |
+
<right_val>-8.4020161628723145e-001</right_val></_></_>
|
417 |
+
<_>
|
418 |
+
<!-- tree 3 -->
|
419 |
+
<_>
|
420 |
+
<!-- root node -->
|
421 |
+
<feature>
|
422 |
+
<rects>
|
423 |
+
<_>
|
424 |
+
10 4 9 3 -1.</_>
|
425 |
+
<_>
|
426 |
+
13 4 3 3 3.</_></rects>
|
427 |
+
<tilted>0</tilted></feature>
|
428 |
+
<threshold>-4.9458951689302921e-003</threshold>
|
429 |
+
<left_val>6.1991941928863525e-001</left_val>
|
430 |
+
<right_val>-6.1633539199829102e-001</right_val></_></_>
|
431 |
+
<_>
|
432 |
+
<!-- tree 4 -->
|
433 |
+
<_>
|
434 |
+
<!-- root node -->
|
435 |
+
<feature>
|
436 |
+
<rects>
|
437 |
+
<_>
|
438 |
+
40 4 10 4 -1.</_>
|
439 |
+
<_>
|
440 |
+
45 4 5 4 2.</_></rects>
|
441 |
+
<tilted>0</tilted></feature>
|
442 |
+
<threshold>-5.1894597709178925e-003</threshold>
|
443 |
+
<left_val>4.4975179433822632e-001</left_val>
|
444 |
+
<right_val>-8.0651968717575073e-001</right_val></_></_>
|
445 |
+
<_>
|
446 |
+
<!-- tree 5 -->
|
447 |
+
<_>
|
448 |
+
<!-- root node -->
|
449 |
+
<feature>
|
450 |
+
<rects>
|
451 |
+
<_>
|
452 |
+
17 14 47 2 -1.</_>
|
453 |
+
<_>
|
454 |
+
17 15 47 1 2.</_></rects>
|
455 |
+
<tilted>0</tilted></feature>
|
456 |
+
<threshold>-1.8824130296707153e-002</threshold>
|
457 |
+
<left_val>6.1992841958999634e-001</left_val>
|
458 |
+
<right_val>-5.5643159151077271e-001</right_val></_></_>
|
459 |
+
<_>
|
460 |
+
<!-- tree 6 -->
|
461 |
+
<_>
|
462 |
+
<!-- root node -->
|
463 |
+
<feature>
|
464 |
+
<rects>
|
465 |
+
<_>
|
466 |
+
8 5 4 7 -1.</_>
|
467 |
+
<_>
|
468 |
+
10 5 2 7 2.</_></rects>
|
469 |
+
<tilted>0</tilted></feature>
|
470 |
+
<threshold>5.6571601890027523e-003</threshold>
|
471 |
+
<left_val>-4.8346561193466187e-001</left_val>
|
472 |
+
<right_val>6.8647360801696777e-001</right_val></_></_></trees>
|
473 |
+
<stage_threshold>-2.2358059883117676e+000</stage_threshold>
|
474 |
+
<parent>4</parent>
|
475 |
+
<next>-1</next></_>
|
476 |
+
<_>
|
477 |
+
<!-- stage 6 -->
|
478 |
+
<trees>
|
479 |
+
<_>
|
480 |
+
<!-- tree 0 -->
|
481 |
+
<_>
|
482 |
+
<!-- root node -->
|
483 |
+
<feature>
|
484 |
+
<rects>
|
485 |
+
<_>
|
486 |
+
56 0 6 6 -1.</_>
|
487 |
+
<_>
|
488 |
+
56 0 3 3 2.</_>
|
489 |
+
<_>
|
490 |
+
59 3 3 3 2.</_></rects>
|
491 |
+
<tilted>0</tilted></feature>
|
492 |
+
<threshold>-9.1503243893384933e-003</threshold>
|
493 |
+
<left_val>6.8174481391906738e-001</left_val>
|
494 |
+
<right_val>-7.7866071462631226e-001</right_val></_></_>
|
495 |
+
<_>
|
496 |
+
<!-- tree 1 -->
|
497 |
+
<_>
|
498 |
+
<!-- root node -->
|
499 |
+
<feature>
|
500 |
+
<rects>
|
501 |
+
<_>
|
502 |
+
0 0 6 6 -1.</_>
|
503 |
+
<_>
|
504 |
+
0 0 3 3 2.</_>
|
505 |
+
<_>
|
506 |
+
3 3 3 3 2.</_></rects>
|
507 |
+
<tilted>0</tilted></feature>
|
508 |
+
<threshold>7.4933180585503578e-003</threshold>
|
509 |
+
<left_val>-6.8696027994155884e-001</left_val>
|
510 |
+
<right_val>6.6913938522338867e-001</right_val></_></_>
|
511 |
+
<_>
|
512 |
+
<!-- tree 2 -->
|
513 |
+
<_>
|
514 |
+
<!-- root node -->
|
515 |
+
<feature>
|
516 |
+
<rects>
|
517 |
+
<_>
|
518 |
+
13 4 48 2 -1.</_>
|
519 |
+
<_>
|
520 |
+
29 4 16 2 3.</_></rects>
|
521 |
+
<tilted>0</tilted></feature>
|
522 |
+
<threshold>4.5296419411897659e-002</threshold>
|
523 |
+
<left_val>-7.3576509952545166e-001</left_val>
|
524 |
+
<right_val>5.9453499317169189e-001</right_val></_></_>
|
525 |
+
<_>
|
526 |
+
<!-- tree 3 -->
|
527 |
+
<_>
|
528 |
+
<!-- root node -->
|
529 |
+
<feature>
|
530 |
+
<rects>
|
531 |
+
<_>
|
532 |
+
42 1 6 15 -1.</_>
|
533 |
+
<_>
|
534 |
+
42 6 6 5 3.</_></rects>
|
535 |
+
<tilted>0</tilted></feature>
|
536 |
+
<threshold>1.1669679544866085e-002</threshold>
|
537 |
+
<left_val>-8.4733831882476807e-001</left_val>
|
538 |
+
<right_val>4.5461329817771912e-001</right_val></_></_>
|
539 |
+
<_>
|
540 |
+
<!-- tree 4 -->
|
541 |
+
<_>
|
542 |
+
<!-- root node -->
|
543 |
+
<feature>
|
544 |
+
<rects>
|
545 |
+
<_>
|
546 |
+
30 8 3 5 -1.</_>
|
547 |
+
<_>
|
548 |
+
31 8 1 5 3.</_></rects>
|
549 |
+
<tilted>0</tilted></feature>
|
550 |
+
<threshold>2.5769430212676525e-003</threshold>
|
551 |
+
<left_val>-5.8270388841629028e-001</left_val>
|
552 |
+
<right_val>7.7900522947311401e-001</right_val></_></_>
|
553 |
+
<_>
|
554 |
+
<!-- tree 5 -->
|
555 |
+
<_>
|
556 |
+
<!-- root node -->
|
557 |
+
<feature>
|
558 |
+
<rects>
|
559 |
+
<_>
|
560 |
+
55 10 8 6 -1.</_>
|
561 |
+
<_>
|
562 |
+
55 13 8 3 2.</_></rects>
|
563 |
+
<tilted>0</tilted></feature>
|
564 |
+
<threshold>-1.4139170525595546e-003</threshold>
|
565 |
+
<left_val>4.5126929879188538e-001</left_val>
|
566 |
+
<right_val>-9.0696328878402710e-001</right_val></_></_></trees>
|
567 |
+
<stage_threshold>-1.8782069683074951e+000</stage_threshold>
|
568 |
+
<parent>5</parent>
|
569 |
+
<next>-1</next></_>
|
570 |
+
<_>
|
571 |
+
<!-- stage 7 -->
|
572 |
+
<trees>
|
573 |
+
<_>
|
574 |
+
<!-- tree 0 -->
|
575 |
+
<_>
|
576 |
+
<!-- root node -->
|
577 |
+
<feature>
|
578 |
+
<rects>
|
579 |
+
<_>
|
580 |
+
4 6 4 7 -1.</_>
|
581 |
+
<_>
|
582 |
+
6 6 2 7 2.</_></rects>
|
583 |
+
<tilted>0</tilted></feature>
|
584 |
+
<threshold>-5.3149578161537647e-003</threshold>
|
585 |
+
<left_val>6.5218788385391235e-001</left_val>
|
586 |
+
<right_val>-7.9464268684387207e-001</right_val></_></_>
|
587 |
+
<_>
|
588 |
+
<!-- tree 1 -->
|
589 |
+
<_>
|
590 |
+
<!-- root node -->
|
591 |
+
<feature>
|
592 |
+
<rects>
|
593 |
+
<_>
|
594 |
+
56 3 6 8 -1.</_>
|
595 |
+
<_>
|
596 |
+
59 3 3 8 2.</_></rects>
|
597 |
+
<tilted>0</tilted></feature>
|
598 |
+
<threshold>-2.2906960919499397e-002</threshold>
|
599 |
+
<left_val>6.6433382034301758e-001</left_val>
|
600 |
+
<right_val>-7.3633247613906860e-001</right_val></_></_>
|
601 |
+
<_>
|
602 |
+
<!-- tree 2 -->
|
603 |
+
<_>
|
604 |
+
<!-- root node -->
|
605 |
+
<feature>
|
606 |
+
<rects>
|
607 |
+
<_>
|
608 |
+
37 2 4 6 -1.</_>
|
609 |
+
<_>
|
610 |
+
37 4 4 2 3.</_></rects>
|
611 |
+
<tilted>0</tilted></feature>
|
612 |
+
<threshold>9.4887977465987206e-003</threshold>
|
613 |
+
<left_val>-8.2612031698226929e-001</left_val>
|
614 |
+
<right_val>4.9333500862121582e-001</right_val></_></_>
|
615 |
+
<_>
|
616 |
+
<!-- tree 3 -->
|
617 |
+
<_>
|
618 |
+
<!-- root node -->
|
619 |
+
<feature>
|
620 |
+
<rects>
|
621 |
+
<_>
|
622 |
+
0 10 30 6 -1.</_>
|
623 |
+
<_>
|
624 |
+
0 12 30 2 3.</_></rects>
|
625 |
+
<tilted>0</tilted></feature>
|
626 |
+
<threshold>4.5138411223888397e-002</threshold>
|
627 |
+
<left_val>-5.4704028367996216e-001</left_val>
|
628 |
+
<right_val>7.6927912235260010e-001</right_val></_></_>
|
629 |
+
<_>
|
630 |
+
<!-- tree 4 -->
|
631 |
+
<_>
|
632 |
+
<!-- root node -->
|
633 |
+
<feature>
|
634 |
+
<rects>
|
635 |
+
<_>
|
636 |
+
0 4 21 12 -1.</_>
|
637 |
+
<_>
|
638 |
+
7 4 7 12 3.</_></rects>
|
639 |
+
<tilted>0</tilted></feature>
|
640 |
+
<threshold>2.5049019604921341e-002</threshold>
|
641 |
+
<left_val>-8.6739641427993774e-001</left_val>
|
642 |
+
<right_val>5.2807968854904175e-001</right_val></_></_></trees>
|
643 |
+
<stage_threshold>-1.0597369670867920e+000</stage_threshold>
|
644 |
+
<parent>6</parent>
|
645 |
+
<next>-1</next></_>
|
646 |
+
<_>
|
647 |
+
<!-- stage 8 -->
|
648 |
+
<trees>
|
649 |
+
<_>
|
650 |
+
<!-- tree 0 -->
|
651 |
+
<_>
|
652 |
+
<!-- root node -->
|
653 |
+
<feature>
|
654 |
+
<rects>
|
655 |
+
<_>
|
656 |
+
44 0 1 14 -1.</_>
|
657 |
+
<_>
|
658 |
+
44 7 1 7 2.</_></rects>
|
659 |
+
<tilted>0</tilted></feature>
|
660 |
+
<threshold>6.6414438188076019e-003</threshold>
|
661 |
+
<left_val>-7.7290147542953491e-001</left_val>
|
662 |
+
<right_val>6.9723731279373169e-001</right_val></_></_>
|
663 |
+
<_>
|
664 |
+
<!-- tree 1 -->
|
665 |
+
<_>
|
666 |
+
<!-- root node -->
|
667 |
+
<feature>
|
668 |
+
<rects>
|
669 |
+
<_>
|
670 |
+
54 3 4 3 -1.</_>
|
671 |
+
<_>
|
672 |
+
56 3 2 3 2.</_></rects>
|
673 |
+
<tilted>0</tilted></feature>
|
674 |
+
<threshold>2.4703629314899445e-003</threshold>
|
675 |
+
<left_val>-7.4289917945861816e-001</left_val>
|
676 |
+
<right_val>6.6825848817825317e-001</right_val></_></_>
|
677 |
+
<_>
|
678 |
+
<!-- tree 2 -->
|
679 |
+
<_>
|
680 |
+
<!-- root node -->
|
681 |
+
<feature>
|
682 |
+
<rects>
|
683 |
+
<_>
|
684 |
+
32 0 30 6 -1.</_>
|
685 |
+
<_>
|
686 |
+
32 0 15 3 2.</_>
|
687 |
+
<_>
|
688 |
+
47 3 15 3 2.</_></rects>
|
689 |
+
<tilted>0</tilted></feature>
|
690 |
+
<threshold>-2.2910499945282936e-002</threshold>
|
691 |
+
<left_val>4.3986389040946960e-001</left_val>
|
692 |
+
<right_val>-9.0588808059692383e-001</right_val></_></_>
|
693 |
+
<_>
|
694 |
+
<!-- tree 3 -->
|
695 |
+
<_>
|
696 |
+
<!-- root node -->
|
697 |
+
<feature>
|
698 |
+
<rects>
|
699 |
+
<_>
|
700 |
+
0 8 9 7 -1.</_>
|
701 |
+
<_>
|
702 |
+
3 8 3 7 3.</_></rects>
|
703 |
+
<tilted>0</tilted></feature>
|
704 |
+
<threshold>3.4193221479654312e-002</threshold>
|
705 |
+
<left_val>-6.9507479667663574e-001</left_val>
|
706 |
+
<right_val>6.2501090764999390e-001</right_val></_></_>
|
707 |
+
<_>
|
708 |
+
<!-- tree 4 -->
|
709 |
+
<_>
|
710 |
+
<!-- root node -->
|
711 |
+
<feature>
|
712 |
+
<rects>
|
713 |
+
<_>
|
714 |
+
30 10 3 3 -1.</_>
|
715 |
+
<_>
|
716 |
+
31 10 1 3 3.</_></rects>
|
717 |
+
<tilted>0</tilted></feature>
|
718 |
+
<threshold>1.5060020377859473e-003</threshold>
|
719 |
+
<left_val>-6.8670761585235596e-001</left_val>
|
720 |
+
<right_val>8.2241541147232056e-001</right_val></_></_>
|
721 |
+
<_>
|
722 |
+
<!-- tree 5 -->
|
723 |
+
<_>
|
724 |
+
<!-- root node -->
|
725 |
+
<feature>
|
726 |
+
<rects>
|
727 |
+
<_>
|
728 |
+
21 3 24 4 -1.</_>
|
729 |
+
<_>
|
730 |
+
29 3 8 4 3.</_></rects>
|
731 |
+
<tilted>0</tilted></feature>
|
732 |
+
<threshold>1.9838380467263050e-005</threshold>
|
733 |
+
<left_val>-9.2727631330490112e-001</left_val>
|
734 |
+
<right_val>6.4723730087280273e-001</right_val></_></_>
|
735 |
+
<_>
|
736 |
+
<!-- tree 6 -->
|
737 |
+
<_>
|
738 |
+
<!-- root node -->
|
739 |
+
<feature>
|
740 |
+
<rects>
|
741 |
+
<_>
|
742 |
+
42 3 12 6 -1.</_>
|
743 |
+
<_>
|
744 |
+
46 3 4 6 3.</_></rects>
|
745 |
+
<tilted>0</tilted></feature>
|
746 |
+
<threshold>-2.2170299416757189e-005</threshold>
|
747 |
+
<left_val>5.6555831432342529e-001</left_val>
|
748 |
+
<right_val>-9.6788132190704346e-001</right_val></_></_></trees>
|
749 |
+
<stage_threshold>-1.4993519783020020e+000</stage_threshold>
|
750 |
+
<parent>7</parent>
|
751 |
+
<next>-1</next></_>
|
752 |
+
<_>
|
753 |
+
<!-- stage 9 -->
|
754 |
+
<trees>
|
755 |
+
<_>
|
756 |
+
<!-- tree 0 -->
|
757 |
+
<_>
|
758 |
+
<!-- root node -->
|
759 |
+
<feature>
|
760 |
+
<rects>
|
761 |
+
<_>
|
762 |
+
56 9 6 6 -1.</_>
|
763 |
+
<_>
|
764 |
+
59 9 3 6 2.</_></rects>
|
765 |
+
<tilted>0</tilted></feature>
|
766 |
+
<threshold>-1.1395259760320187e-002</threshold>
|
767 |
+
<left_val>7.1383631229400635e-001</left_val>
|
768 |
+
<right_val>-8.7429678440093994e-001</right_val></_></_>
|
769 |
+
<_>
|
770 |
+
<!-- tree 1 -->
|
771 |
+
<_>
|
772 |
+
<!-- root node -->
|
773 |
+
<feature>
|
774 |
+
<rects>
|
775 |
+
<_>
|
776 |
+
6 4 1 6 -1.</_>
|
777 |
+
<_>
|
778 |
+
6 7 1 3 2.</_></rects>
|
779 |
+
<tilted>0</tilted></feature>
|
780 |
+
<threshold>-2.1864590235054493e-003</threshold>
|
781 |
+
<left_val>8.5311782360076904e-001</left_val>
|
782 |
+
<right_val>-6.4777731895446777e-001</right_val></_></_>
|
783 |
+
<_>
|
784 |
+
<!-- tree 2 -->
|
785 |
+
<_>
|
786 |
+
<!-- root node -->
|
787 |
+
<feature>
|
788 |
+
<rects>
|
789 |
+
<_>
|
790 |
+
0 0 12 4 -1.</_>
|
791 |
+
<_>
|
792 |
+
0 0 6 2 2.</_>
|
793 |
+
<_>
|
794 |
+
6 2 6 2 2.</_></rects>
|
795 |
+
<tilted>0</tilted></feature>
|
796 |
+
<threshold>2.3193720262497663e-003</threshold>
|
797 |
+
<left_val>-7.6411879062652588e-001</left_val>
|
798 |
+
<right_val>7.1867972612380981e-001</right_val></_></_>
|
799 |
+
<_>
|
800 |
+
<!-- tree 3 -->
|
801 |
+
<_>
|
802 |
+
<!-- root node -->
|
803 |
+
<feature>
|
804 |
+
<rects>
|
805 |
+
<_>
|
806 |
+
43 12 18 2 -1.</_>
|
807 |
+
<_>
|
808 |
+
52 12 9 2 2.</_></rects>
|
809 |
+
<tilted>0</tilted></feature>
|
810 |
+
<threshold>-7.9916073009371758e-003</threshold>
|
811 |
+
<left_val>6.6442942619323730e-001</left_val>
|
812 |
+
<right_val>-7.9540950059890747e-001</right_val></_></_>
|
813 |
+
<_>
|
814 |
+
<!-- tree 4 -->
|
815 |
+
<_>
|
816 |
+
<!-- root node -->
|
817 |
+
<feature>
|
818 |
+
<rects>
|
819 |
+
<_>
|
820 |
+
9 5 2 8 -1.</_>
|
821 |
+
<_>
|
822 |
+
10 5 1 8 2.</_></rects>
|
823 |
+
<tilted>0</tilted></feature>
|
824 |
+
<threshold>1.4212740352377295e-003</threshold>
|
825 |
+
<left_val>-6.3904231786727905e-001</left_val>
|
826 |
+
<right_val>7.5050598382949829e-001</right_val></_></_></trees>
|
827 |
+
<stage_threshold>-8.4829801321029663e-001</stage_threshold>
|
828 |
+
<parent>8</parent>
|
829 |
+
<next>-1</next></_>
|
830 |
+
<_>
|
831 |
+
<!-- stage 10 -->
|
832 |
+
<trees>
|
833 |
+
<_>
|
834 |
+
<!-- tree 0 -->
|
835 |
+
<_>
|
836 |
+
<!-- root node -->
|
837 |
+
<feature>
|
838 |
+
<rects>
|
839 |
+
<_>
|
840 |
+
1 9 6 3 -1.</_>
|
841 |
+
<_>
|
842 |
+
3 9 2 3 3.</_></rects>
|
843 |
+
<tilted>0</tilted></feature>
|
844 |
+
<threshold>6.4091659151017666e-003</threshold>
|
845 |
+
<left_val>-8.8425230979919434e-001</left_val>
|
846 |
+
<right_val>9.9953681230545044e-001</right_val></_></_>
|
847 |
+
<_>
|
848 |
+
<!-- tree 1 -->
|
849 |
+
<_>
|
850 |
+
<!-- root node -->
|
851 |
+
<feature>
|
852 |
+
<rects>
|
853 |
+
<_>
|
854 |
+
56 8 2 8 -1.</_>
|
855 |
+
<_>
|
856 |
+
56 12 2 4 2.</_></rects>
|
857 |
+
<tilted>0</tilted></feature>
|
858 |
+
<threshold>-6.3316390151157975e-004</threshold>
|
859 |
+
<left_val>8.3822172880172729e-001</left_val>
|
860 |
+
<right_val>-9.8322170972824097e-001</right_val></_></_>
|
861 |
+
<_>
|
862 |
+
<!-- tree 2 -->
|
863 |
+
<_>
|
864 |
+
<!-- root node -->
|
865 |
+
<feature>
|
866 |
+
<rects>
|
867 |
+
<_>
|
868 |
+
24 2 6 13 -1.</_>
|
869 |
+
<_>
|
870 |
+
26 2 2 13 3.</_></rects>
|
871 |
+
<tilted>0</tilted></feature>
|
872 |
+
<threshold>-6.4947169448714703e-005</threshold>
|
873 |
+
<left_val>1.</left_val>
|
874 |
+
<right_val>-9.1822808980941772e-001</right_val></_></_>
|
875 |
+
<_>
|
876 |
+
<!-- tree 3 -->
|
877 |
+
<_>
|
878 |
+
<!-- root node -->
|
879 |
+
<feature>
|
880 |
+
<rects>
|
881 |
+
<_>
|
882 |
+
33 7 24 4 -1.</_>
|
883 |
+
<_>
|
884 |
+
41 7 8 4 3.</_></rects>
|
885 |
+
<tilted>0</tilted></feature>
|
886 |
+
<threshold>5.3404141217470169e-003</threshold>
|
887 |
+
<left_val>-9.4317251443862915e-001</left_val>
|
888 |
+
<right_val>9.0425151586532593e-001</right_val></_></_></trees>
|
889 |
+
<stage_threshold>-6.0007210820913315e-002</stage_threshold>
|
890 |
+
<parent>9</parent>
|
891 |
+
<next>-1</next></_>
|
892 |
+
<_>
|
893 |
+
<!-- stage 11 -->
|
894 |
+
<trees>
|
895 |
+
<_>
|
896 |
+
<!-- tree 0 -->
|
897 |
+
<_>
|
898 |
+
<!-- root node -->
|
899 |
+
<feature>
|
900 |
+
<rects>
|
901 |
+
<_>
|
902 |
+
1 1 57 4 -1.</_>
|
903 |
+
<_>
|
904 |
+
1 3 57 2 2.</_></rects>
|
905 |
+
<tilted>0</tilted></feature>
|
906 |
+
<threshold>1.0755469650030136e-001</threshold>
|
907 |
+
<left_val>-7.1647202968597412e-001</left_val>
|
908 |
+
<right_val>8.7827038764953613e-001</right_val></_></_>
|
909 |
+
<_>
|
910 |
+
<!-- tree 1 -->
|
911 |
+
<_>
|
912 |
+
<!-- root node -->
|
913 |
+
<feature>
|
914 |
+
<rects>
|
915 |
+
<_>
|
916 |
+
0 2 6 14 -1.</_>
|
917 |
+
<_>
|
918 |
+
3 2 3 14 2.</_></rects>
|
919 |
+
<tilted>0</tilted></feature>
|
920 |
+
<threshold>3.1668949872255325e-002</threshold>
|
921 |
+
<left_val>-8.7051069736480713e-001</left_val>
|
922 |
+
<right_val>5.8807212114334106e-001</right_val></_></_>
|
923 |
+
<_>
|
924 |
+
<!-- tree 2 -->
|
925 |
+
<_>
|
926 |
+
<!-- root node -->
|
927 |
+
<feature>
|
928 |
+
<rects>
|
929 |
+
<_>
|
930 |
+
52 3 6 10 -1.</_>
|
931 |
+
<_>
|
932 |
+
54 3 2 10 3.</_></rects>
|
933 |
+
<tilted>0</tilted></feature>
|
934 |
+
<threshold>-1.0572380386292934e-002</threshold>
|
935 |
+
<left_val>6.2438100576400757e-001</left_val>
|
936 |
+
<right_val>-7.4027371406555176e-001</right_val></_></_>
|
937 |
+
<_>
|
938 |
+
<!-- tree 3 -->
|
939 |
+
<_>
|
940 |
+
<!-- root node -->
|
941 |
+
<feature>
|
942 |
+
<rects>
|
943 |
+
<_>
|
944 |
+
1 14 61 2 -1.</_>
|
945 |
+
<_>
|
946 |
+
1 15 61 1 2.</_></rects>
|
947 |
+
<tilted>0</tilted></feature>
|
948 |
+
<threshold>-2.7396259829401970e-002</threshold>
|
949 |
+
<left_val>8.9776748418807983e-001</left_val>
|
950 |
+
<right_val>-5.2986758947372437e-001</right_val></_></_>
|
951 |
+
<_>
|
952 |
+
<!-- tree 4 -->
|
953 |
+
<_>
|
954 |
+
<!-- root node -->
|
955 |
+
<feature>
|
956 |
+
<rects>
|
957 |
+
<_>
|
958 |
+
28 0 11 12 -1.</_>
|
959 |
+
<_>
|
960 |
+
28 4 11 4 3.</_></rects>
|
961 |
+
<tilted>0</tilted></feature>
|
962 |
+
<threshold>2.5918649509549141e-002</threshold>
|
963 |
+
<left_val>-8.6482518911361694e-001</left_val>
|
964 |
+
<right_val>5.3121817111968994e-001</right_val></_></_></trees>
|
965 |
+
<stage_threshold>-9.6125108003616333e-001</stage_threshold>
|
966 |
+
<parent>10</parent>
|
967 |
+
<next>-1</next></_>
|
968 |
+
<_>
|
969 |
+
<!-- stage 12 -->
|
970 |
+
<trees>
|
971 |
+
<_>
|
972 |
+
<!-- tree 0 -->
|
973 |
+
<_>
|
974 |
+
<!-- root node -->
|
975 |
+
<feature>
|
976 |
+
<rects>
|
977 |
+
<_>
|
978 |
+
22 1 41 4 -1.</_>
|
979 |
+
<_>
|
980 |
+
22 3 41 2 2.</_></rects>
|
981 |
+
<tilted>0</tilted></feature>
|
982 |
+
<threshold>7.1039132773876190e-002</threshold>
|
983 |
+
<left_val>-7.5719678401947021e-001</left_val>
|
984 |
+
<right_val>7.5645631551742554e-001</right_val></_></_>
|
985 |
+
<_>
|
986 |
+
<!-- tree 1 -->
|
987 |
+
<_>
|
988 |
+
<!-- root node -->
|
989 |
+
<feature>
|
990 |
+
<rects>
|
991 |
+
<_>
|
992 |
+
41 6 6 8 -1.</_>
|
993 |
+
<_>
|
994 |
+
43 6 2 8 3.</_></rects>
|
995 |
+
<tilted>0</tilted></feature>
|
996 |
+
<threshold>7.6241148635745049e-003</threshold>
|
997 |
+
<left_val>-7.9783838987350464e-001</left_val>
|
998 |
+
<right_val>7.1733069419860840e-001</right_val></_></_>
|
999 |
+
<_>
|
1000 |
+
<!-- tree 2 -->
|
1001 |
+
<_>
|
1002 |
+
<!-- root node -->
|
1003 |
+
<feature>
|
1004 |
+
<rects>
|
1005 |
+
<_>
|
1006 |
+
50 9 14 5 -1.</_>
|
1007 |
+
<_>
|
1008 |
+
57 9 7 5 2.</_></rects>
|
1009 |
+
<tilted>0</tilted></feature>
|
1010 |
+
<threshold>-2.7092639356851578e-002</threshold>
|
1011 |
+
<left_val>6.0071170330047607e-001</left_val>
|
1012 |
+
<right_val>-8.4794402122497559e-001</right_val></_></_>
|
1013 |
+
<_>
|
1014 |
+
<!-- tree 3 -->
|
1015 |
+
<_>
|
1016 |
+
<!-- root node -->
|
1017 |
+
<feature>
|
1018 |
+
<rects>
|
1019 |
+
<_>
|
1020 |
+
4 1 12 5 -1.</_>
|
1021 |
+
<_>
|
1022 |
+
10 1 6 5 2.</_></rects>
|
1023 |
+
<tilted>0</tilted></feature>
|
1024 |
+
<threshold>-8.1267888890579343e-004</threshold>
|
1025 |
+
<left_val>5.9364068508148193e-001</left_val>
|
1026 |
+
<right_val>-8.9295238256454468e-001</right_val></_></_>
|
1027 |
+
<_>
|
1028 |
+
<!-- tree 4 -->
|
1029 |
+
<_>
|
1030 |
+
<!-- root node -->
|
1031 |
+
<feature>
|
1032 |
+
<rects>
|
1033 |
+
<_>
|
1034 |
+
37 9 3 3 -1.</_>
|
1035 |
+
<_>
|
1036 |
+
38 9 1 3 3.</_></rects>
|
1037 |
+
<tilted>0</tilted></feature>
|
1038 |
+
<threshold>8.3705072756856680e-004</threshold>
|
1039 |
+
<left_val>-6.4887362718582153e-001</left_val>
|
1040 |
+
<right_val>7.8537952899932861e-001</right_val></_></_></trees>
|
1041 |
+
<stage_threshold>-1.0618970394134521e+000</stage_threshold>
|
1042 |
+
<parent>11</parent>
|
1043 |
+
<next>-1</next></_>
|
1044 |
+
<_>
|
1045 |
+
<!-- stage 13 -->
|
1046 |
+
<trees>
|
1047 |
+
<_>
|
1048 |
+
<!-- tree 0 -->
|
1049 |
+
<_>
|
1050 |
+
<!-- root node -->
|
1051 |
+
<feature>
|
1052 |
+
<rects>
|
1053 |
+
<_>
|
1054 |
+
54 0 10 6 -1.</_>
|
1055 |
+
<_>
|
1056 |
+
54 0 5 3 2.</_>
|
1057 |
+
<_>
|
1058 |
+
59 3 5 3 2.</_></rects>
|
1059 |
+
<tilted>0</tilted></feature>
|
1060 |
+
<threshold>-9.7556859254837036e-003</threshold>
|
1061 |
+
<left_val>7.6982218027114868e-001</left_val>
|
1062 |
+
<right_val>-8.5293501615524292e-001</right_val></_></_>
|
1063 |
+
<_>
|
1064 |
+
<!-- tree 1 -->
|
1065 |
+
<_>
|
1066 |
+
<!-- root node -->
|
1067 |
+
<feature>
|
1068 |
+
<rects>
|
1069 |
+
<_>
|
1070 |
+
47 0 6 11 -1.</_>
|
1071 |
+
<_>
|
1072 |
+
49 0 2 11 3.</_></rects>
|
1073 |
+
<tilted>0</tilted></feature>
|
1074 |
+
<threshold>-8.6617246270179749e-003</threshold>
|
1075 |
+
<left_val>8.4029090404510498e-001</left_val>
|
1076 |
+
<right_val>-7.1949690580368042e-001</right_val></_></_>
|
1077 |
+
<_>
|
1078 |
+
<!-- tree 2 -->
|
1079 |
+
<_>
|
1080 |
+
<!-- root node -->
|
1081 |
+
<feature>
|
1082 |
+
<rects>
|
1083 |
+
<_>
|
1084 |
+
19 2 20 2 -1.</_>
|
1085 |
+
<_>
|
1086 |
+
19 3 20 1 2.</_></rects>
|
1087 |
+
<tilted>0</tilted></feature>
|
1088 |
+
<threshold>1.6897840425372124e-002</threshold>
|
1089 |
+
<left_val>-5.3601992130279541e-001</left_val>
|
1090 |
+
<right_val>9.5484441518783569e-001</right_val></_></_>
|
1091 |
+
<_>
|
1092 |
+
<!-- tree 3 -->
|
1093 |
+
<_>
|
1094 |
+
<!-- root node -->
|
1095 |
+
<feature>
|
1096 |
+
<rects>
|
1097 |
+
<_>
|
1098 |
+
14 4 6 11 -1.</_>
|
1099 |
+
<_>
|
1100 |
+
17 4 3 11 2.</_></rects>
|
1101 |
+
<tilted>0</tilted></feature>
|
1102 |
+
<threshold>4.7526158596156165e-005</threshold>
|
1103 |
+
<left_val>-7.6412862539291382e-001</left_val>
|
1104 |
+
<right_val>7.5398761034011841e-001</right_val></_></_>
|
1105 |
+
<_>
|
1106 |
+
<!-- tree 4 -->
|
1107 |
+
<_>
|
1108 |
+
<!-- root node -->
|
1109 |
+
<feature>
|
1110 |
+
<rects>
|
1111 |
+
<_>
|
1112 |
+
31 9 33 2 -1.</_>
|
1113 |
+
<_>
|
1114 |
+
42 9 11 2 3.</_></rects>
|
1115 |
+
<tilted>0</tilted></feature>
|
1116 |
+
<threshold>6.5607670694589615e-003</threshold>
|
1117 |
+
<left_val>-9.9346441030502319e-001</left_val>
|
1118 |
+
<right_val>6.4864277839660645e-001</right_val></_></_></trees>
|
1119 |
+
<stage_threshold>-7.3307347297668457e-001</stage_threshold>
|
1120 |
+
<parent>12</parent>
|
1121 |
+
<next>-1</next></_>
|
1122 |
+
<_>
|
1123 |
+
<!-- stage 14 -->
|
1124 |
+
<trees>
|
1125 |
+
<_>
|
1126 |
+
<!-- tree 0 -->
|
1127 |
+
<_>
|
1128 |
+
<!-- root node -->
|
1129 |
+
<feature>
|
1130 |
+
<rects>
|
1131 |
+
<_>
|
1132 |
+
6 1 53 6 -1.</_>
|
1133 |
+
<_>
|
1134 |
+
6 3 53 2 3.</_></rects>
|
1135 |
+
<tilted>0</tilted></feature>
|
1136 |
+
<threshold>1.0103269666433334e-001</threshold>
|
1137 |
+
<left_val>-7.3275578022003174e-001</left_val>
|
1138 |
+
<right_val>8.4619927406311035e-001</right_val></_></_>
|
1139 |
+
<_>
|
1140 |
+
<!-- tree 1 -->
|
1141 |
+
<_>
|
1142 |
+
<!-- root node -->
|
1143 |
+
<feature>
|
1144 |
+
<rects>
|
1145 |
+
<_>
|
1146 |
+
49 9 4 6 -1.</_>
|
1147 |
+
<_>
|
1148 |
+
49 9 2 3 2.</_>
|
1149 |
+
<_>
|
1150 |
+
51 12 2 3 2.</_></rects>
|
1151 |
+
<tilted>0</tilted></feature>
|
1152 |
+
<threshold>-2.8920811018906534e-004</threshold>
|
1153 |
+
<left_val>7.1564781665802002e-001</left_val>
|
1154 |
+
<right_val>-8.8221758604049683e-001</right_val></_></_>
|
1155 |
+
<_>
|
1156 |
+
<!-- tree 2 -->
|
1157 |
+
<_>
|
1158 |
+
<!-- root node -->
|
1159 |
+
<feature>
|
1160 |
+
<rects>
|
1161 |
+
<_>
|
1162 |
+
0 9 30 7 -1.</_>
|
1163 |
+
<_>
|
1164 |
+
10 9 10 7 3.</_></rects>
|
1165 |
+
<tilted>0</tilted></feature>
|
1166 |
+
<threshold>1.0838840156793594e-002</threshold>
|
1167 |
+
<left_val>-8.7420248985290527e-001</left_val>
|
1168 |
+
<right_val>6.0648679733276367e-001</right_val></_></_>
|
1169 |
+
<_>
|
1170 |
+
<!-- tree 3 -->
|
1171 |
+
<_>
|
1172 |
+
<!-- root node -->
|
1173 |
+
<feature>
|
1174 |
+
<rects>
|
1175 |
+
<_>
|
1176 |
+
40 4 6 2 -1.</_>
|
1177 |
+
<_>
|
1178 |
+
42 4 2 2 3.</_></rects>
|
1179 |
+
<tilted>0</tilted></feature>
|
1180 |
+
<threshold>5.0803890917450190e-004</threshold>
|
1181 |
+
<left_val>-9.0554022789001465e-001</left_val>
|
1182 |
+
<right_val>6.4213967323303223e-001</right_val></_></_>
|
1183 |
+
<_>
|
1184 |
+
<!-- tree 4 -->
|
1185 |
+
<_>
|
1186 |
+
<!-- root node -->
|
1187 |
+
<feature>
|
1188 |
+
<rects>
|
1189 |
+
<_>
|
1190 |
+
1 9 6 1 -1.</_>
|
1191 |
+
<_>
|
1192 |
+
3 9 2 1 3.</_></rects>
|
1193 |
+
<tilted>0</tilted></feature>
|
1194 |
+
<threshold>2.3357039317488670e-003</threshold>
|
1195 |
+
<left_val>-9.2574918270111084e-001</left_val>
|
1196 |
+
<right_val>8.6384928226470947e-001</right_val></_></_>
|
1197 |
+
<_>
|
1198 |
+
<!-- tree 5 -->
|
1199 |
+
<_>
|
1200 |
+
<!-- root node -->
|
1201 |
+
<feature>
|
1202 |
+
<rects>
|
1203 |
+
<_>
|
1204 |
+
47 3 4 10 -1.</_>
|
1205 |
+
<_>
|
1206 |
+
47 8 4 5 2.</_></rects>
|
1207 |
+
<tilted>0</tilted></feature>
|
1208 |
+
<threshold>8.0239427916239947e-005</threshold>
|
1209 |
+
<left_val>-9.9618428945541382e-001</left_val>
|
1210 |
+
<right_val>9.5355111360549927e-001</right_val></_></_>
|
1211 |
+
<_>
|
1212 |
+
<!-- tree 6 -->
|
1213 |
+
<_>
|
1214 |
+
<!-- root node -->
|
1215 |
+
<feature>
|
1216 |
+
<rects>
|
1217 |
+
<_>
|
1218 |
+
31 5 30 11 -1.</_>
|
1219 |
+
<_>
|
1220 |
+
41 5 10 11 3.</_></rects>
|
1221 |
+
<tilted>0</tilted></feature>
|
1222 |
+
<threshold>3.2030208967626095e-003</threshold>
|
1223 |
+
<left_val>-1.</left_val>
|
1224 |
+
<right_val>1.0001050233840942e+000</right_val></_></_>
|
1225 |
+
<_>
|
1226 |
+
<!-- tree 7 -->
|
1227 |
+
<_>
|
1228 |
+
<!-- root node -->
|
1229 |
+
<feature>
|
1230 |
+
<rects>
|
1231 |
+
<_>
|
1232 |
+
0 0 2 1 -1.</_>
|
1233 |
+
<_>
|
1234 |
+
1 0 1 1 2.</_></rects>
|
1235 |
+
<tilted>0</tilted></feature>
|
1236 |
+
<threshold>0.</threshold>
|
1237 |
+
<left_val>0.</left_val>
|
1238 |
+
<right_val>-1.</right_val></_></_>
|
1239 |
+
<_>
|
1240 |
+
<!-- tree 8 -->
|
1241 |
+
<_>
|
1242 |
+
<!-- root node -->
|
1243 |
+
<feature>
|
1244 |
+
<rects>
|
1245 |
+
<_>
|
1246 |
+
21 3 42 5 -1.</_>
|
1247 |
+
<_>
|
1248 |
+
35 3 14 5 3.</_></rects>
|
1249 |
+
<tilted>0</tilted></feature>
|
1250 |
+
<threshold>2.6143440045416355e-003</threshold>
|
1251 |
+
<left_val>-1.</left_val>
|
1252 |
+
<right_val>1.0002139806747437e+000</right_val></_></_>
|
1253 |
+
<_>
|
1254 |
+
<!-- tree 9 -->
|
1255 |
+
<_>
|
1256 |
+
<!-- root node -->
|
1257 |
+
<feature>
|
1258 |
+
<rects>
|
1259 |
+
<_>
|
1260 |
+
0 0 2 1 -1.</_>
|
1261 |
+
<_>
|
1262 |
+
1 0 1 1 2.</_></rects>
|
1263 |
+
<tilted>0</tilted></feature>
|
1264 |
+
<threshold>0.</threshold>
|
1265 |
+
<left_val>0.</left_val>
|
1266 |
+
<right_val>-1.</right_val></_></_>
|
1267 |
+
<_>
|
1268 |
+
<!-- tree 10 -->
|
1269 |
+
<_>
|
1270 |
+
<!-- root node -->
|
1271 |
+
<feature>
|
1272 |
+
<rects>
|
1273 |
+
<_>
|
1274 |
+
8 5 30 9 -1.</_>
|
1275 |
+
<_>
|
1276 |
+
8 8 30 3 3.</_></rects>
|
1277 |
+
<tilted>0</tilted></feature>
|
1278 |
+
<threshold>-7.0475979009643197e-004</threshold>
|
1279 |
+
<left_val>1.</left_val>
|
1280 |
+
<right_val>-9.9976968765258789e-001</right_val></_></_>
|
1281 |
+
<_>
|
1282 |
+
<!-- tree 11 -->
|
1283 |
+
<_>
|
1284 |
+
<!-- root node -->
|
1285 |
+
<feature>
|
1286 |
+
<rects>
|
1287 |
+
<_>
|
1288 |
+
3 12 33 3 -1.</_>
|
1289 |
+
<_>
|
1290 |
+
14 12 11 3 3.</_></rects>
|
1291 |
+
<tilted>0</tilted></feature>
|
1292 |
+
<threshold>2.1271279547363520e-003</threshold>
|
1293 |
+
<left_val>-9.9694627523422241e-001</left_val>
|
1294 |
+
<right_val>1.0002720355987549e+000</right_val></_></_>
|
1295 |
+
<_>
|
1296 |
+
<!-- tree 12 -->
|
1297 |
+
<_>
|
1298 |
+
<!-- root node -->
|
1299 |
+
<feature>
|
1300 |
+
<rects>
|
1301 |
+
<_>
|
1302 |
+
0 0 3 2 -1.</_>
|
1303 |
+
<_>
|
1304 |
+
1 0 1 2 3.</_></rects>
|
1305 |
+
<tilted>0</tilted></feature>
|
1306 |
+
<threshold>-2.4224430671893060e-004</threshold>
|
1307 |
+
<left_val>1.</left_val>
|
1308 |
+
<right_val>-1.</right_val></_></_>
|
1309 |
+
<_>
|
1310 |
+
<!-- tree 13 -->
|
1311 |
+
<_>
|
1312 |
+
<!-- root node -->
|
1313 |
+
<feature>
|
1314 |
+
<rects>
|
1315 |
+
<_>
|
1316 |
+
46 4 3 8 -1.</_>
|
1317 |
+
<_>
|
1318 |
+
47 4 1 8 3.</_></rects>
|
1319 |
+
<tilted>0</tilted></feature>
|
1320 |
+
<threshold>7.4700301047414541e-004</threshold>
|
1321 |
+
<left_val>-9.9108231067657471e-001</left_val>
|
1322 |
+
<right_val>9.9941182136535645e-001</right_val></_></_></trees>
|
1323 |
+
<stage_threshold>-1.0991690158843994e+000</stage_threshold>
|
1324 |
+
<parent>13</parent>
|
1325 |
+
<next>-1</next></_>
|
1326 |
+
<_>
|
1327 |
+
<!-- stage 15 -->
|
1328 |
+
<trees>
|
1329 |
+
<_>
|
1330 |
+
<!-- tree 0 -->
|
1331 |
+
<_>
|
1332 |
+
<!-- root node -->
|
1333 |
+
<feature>
|
1334 |
+
<rects>
|
1335 |
+
<_>
|
1336 |
+
1 2 6 5 -1.</_>
|
1337 |
+
<_>
|
1338 |
+
3 2 2 5 3.</_></rects>
|
1339 |
+
<tilted>0</tilted></feature>
|
1340 |
+
<threshold>1.7227890202775598e-003</threshold>
|
1341 |
+
<left_val>-9.3608891963958740e-001</left_val>
|
1342 |
+
<right_val>8.7251222133636475e-001</right_val></_></_>
|
1343 |
+
<_>
|
1344 |
+
<!-- tree 1 -->
|
1345 |
+
<_>
|
1346 |
+
<!-- root node -->
|
1347 |
+
<feature>
|
1348 |
+
<rects>
|
1349 |
+
<_>
|
1350 |
+
0 3 18 5 -1.</_>
|
1351 |
+
<_>
|
1352 |
+
6 3 6 5 3.</_></rects>
|
1353 |
+
<tilted>0</tilted></feature>
|
1354 |
+
<threshold>2.7599320746958256e-003</threshold>
|
1355 |
+
<left_val>-9.9757021665573120e-001</left_val>
|
1356 |
+
<right_val>1.0000289678573608e+000</right_val></_></_>
|
1357 |
+
<_>
|
1358 |
+
<!-- tree 2 -->
|
1359 |
+
<_>
|
1360 |
+
<!-- root node -->
|
1361 |
+
<feature>
|
1362 |
+
<rects>
|
1363 |
+
<_>
|
1364 |
+
3 1 6 14 -1.</_>
|
1365 |
+
<_>
|
1366 |
+
6 1 3 14 2.</_></rects>
|
1367 |
+
<tilted>0</tilted></feature>
|
1368 |
+
<threshold>-8.9444358309265226e-005</threshold>
|
1369 |
+
<left_val>1.</left_val>
|
1370 |
+
<right_val>-9.9264812469482422e-001</right_val></_></_>
|
1371 |
+
<_>
|
1372 |
+
<!-- tree 3 -->
|
1373 |
+
<_>
|
1374 |
+
<!-- root node -->
|
1375 |
+
<feature>
|
1376 |
+
<rects>
|
1377 |
+
<_>
|
1378 |
+
3 6 2 10 -1.</_>
|
1379 |
+
<_>
|
1380 |
+
3 11 2 5 2.</_></rects>
|
1381 |
+
<tilted>0</tilted></feature>
|
1382 |
+
<threshold>-2.7962020249105990e-004</threshold>
|
1383 |
+
<left_val>8.2833290100097656e-001</left_val>
|
1384 |
+
<right_val>-9.8444151878356934e-001</right_val></_></_>
|
1385 |
+
<_>
|
1386 |
+
<!-- tree 4 -->
|
1387 |
+
<_>
|
1388 |
+
<!-- root node -->
|
1389 |
+
<feature>
|
1390 |
+
<rects>
|
1391 |
+
<_>
|
1392 |
+
42 0 4 6 -1.</_>
|
1393 |
+
<_>
|
1394 |
+
42 0 2 3 2.</_>
|
1395 |
+
<_>
|
1396 |
+
44 3 2 3 2.</_></rects>
|
1397 |
+
<tilted>0</tilted></feature>
|
1398 |
+
<threshold>-2.7560539820115082e-005</threshold>
|
1399 |
+
<left_val>1.</left_val>
|
1400 |
+
<right_val>-9.9543339014053345e-001</right_val></_></_></trees>
|
1401 |
+
<stage_threshold>-9.1314977407455444e-001</stage_threshold>
|
1402 |
+
<parent>14</parent>
|
1403 |
+
<next>-1</next></_></stages></haarcascade_pltzzz64x16_16STG>
|
1404 |
+
</opencv_storage>
|
cv2/data/haarcascade_lowerbody.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cv2/data/haarcascade_profileface.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cv2/data/haarcascade_righteye_2splits.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cv2/data/haarcascade_russian_plate_number.xml
ADDED
@@ -0,0 +1,2656 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<opencv_storage>
|
3 |
+
<cascade>
|
4 |
+
<stageType>BOOST</stageType>
|
5 |
+
<featureType>HAAR</featureType>
|
6 |
+
<height>20</height>
|
7 |
+
<width>60</width>
|
8 |
+
<stageParams>
|
9 |
+
<boostType>GAB</boostType>
|
10 |
+
<minHitRate>9.9500000476837158e-001</minHitRate>
|
11 |
+
<maxFalseAlarm>5.0000000000000000e-001</maxFalseAlarm>
|
12 |
+
<weightTrimRate>9.4999999999999996e-001</weightTrimRate>
|
13 |
+
<maxDepth>1</maxDepth>
|
14 |
+
<maxWeakCount>100</maxWeakCount></stageParams>
|
15 |
+
<featureParams>
|
16 |
+
<maxCatCount>0</maxCatCount>
|
17 |
+
<featSize>1</featSize>
|
18 |
+
<mode>ALL</mode></featureParams>
|
19 |
+
<stageNum>20</stageNum>
|
20 |
+
<stages>
|
21 |
+
<!-- stage 0 -->
|
22 |
+
<_>
|
23 |
+
<maxWeakCount>6</maxWeakCount>
|
24 |
+
<stageThreshold>-1.3110191822052002e+000</stageThreshold>
|
25 |
+
<weakClassifiers>
|
26 |
+
<_>
|
27 |
+
<internalNodes>
|
28 |
+
0 -1 193 1.0079263709485531e-002</internalNodes>
|
29 |
+
<leafValues>
|
30 |
+
-8.1339186429977417e-001 5.0277775526046753e-001</leafValues></_>
|
31 |
+
<_>
|
32 |
+
<internalNodes>
|
33 |
+
0 -1 94 -2.2060684859752655e-002</internalNodes>
|
34 |
+
<leafValues>
|
35 |
+
7.9418992996215820e-001 -5.0896102190017700e-001</leafValues></_>
|
36 |
+
<_>
|
37 |
+
<internalNodes>
|
38 |
+
0 -1 18 -4.8777908086776733e-002</internalNodes>
|
39 |
+
<leafValues>
|
40 |
+
7.1656656265258789e-001 -4.1640335321426392e-001</leafValues></_>
|
41 |
+
<_>
|
42 |
+
<internalNodes>
|
43 |
+
0 -1 35 1.0387318208813667e-002</internalNodes>
|
44 |
+
<leafValues>
|
45 |
+
3.7618312239646912e-001 -8.5504144430160522e-001</leafValues></_>
|
46 |
+
<_>
|
47 |
+
<internalNodes>
|
48 |
+
0 -1 191 -9.4083719886839390e-004</internalNodes>
|
49 |
+
<leafValues>
|
50 |
+
4.2658549547195435e-001 -5.7729166746139526e-001</leafValues></_>
|
51 |
+
<_>
|
52 |
+
<internalNodes>
|
53 |
+
0 -1 48 -8.2391249015927315e-003</internalNodes>
|
54 |
+
<leafValues>
|
55 |
+
8.2346975803375244e-001 -3.7503159046173096e-001</leafValues></_></weakClassifiers></_>
|
56 |
+
<!-- stage 1 -->
|
57 |
+
<_>
|
58 |
+
<maxWeakCount>6</maxWeakCount>
|
59 |
+
<stageThreshold>-1.1759783029556274e+000</stageThreshold>
|
60 |
+
<weakClassifiers>
|
61 |
+
<_>
|
62 |
+
<internalNodes>
|
63 |
+
0 -1 21 1.7386786639690399e-001</internalNodes>
|
64 |
+
<leafValues>
|
65 |
+
-6.8139964342117310e-001 6.0767590999603271e-001</leafValues></_>
|
66 |
+
<_>
|
67 |
+
<internalNodes>
|
68 |
+
0 -1 28 -1.9797295331954956e-002</internalNodes>
|
69 |
+
<leafValues>
|
70 |
+
7.8072130680084229e-001 -4.4399836659431458e-001</leafValues></_>
|
71 |
+
<_>
|
72 |
+
<internalNodes>
|
73 |
+
0 -1 46 -1.0154811898246408e-003</internalNodes>
|
74 |
+
<leafValues>
|
75 |
+
3.3383268117904663e-001 -7.6357340812683105e-001</leafValues></_>
|
76 |
+
<_>
|
77 |
+
<internalNodes>
|
78 |
+
0 -1 138 2.4954911321401596e-002</internalNodes>
|
79 |
+
<leafValues>
|
80 |
+
-3.9979115128517151e-001 6.8620890378952026e-001</leafValues></_>
|
81 |
+
<_>
|
82 |
+
<internalNodes>
|
83 |
+
0 -1 25 2.8837744612246752e-003</internalNodes>
|
84 |
+
<leafValues>
|
85 |
+
-2.7928480505943298e-001 7.9980146884918213e-001</leafValues></_>
|
86 |
+
<_>
|
87 |
+
<internalNodes>
|
88 |
+
0 -1 26 -3.8839362561702728e-002</internalNodes>
|
89 |
+
<leafValues>
|
90 |
+
-7.8442335128784180e-001 3.4929576516151428e-001</leafValues></_></weakClassifiers></_>
|
91 |
+
<!-- stage 2 -->
|
92 |
+
<_>
|
93 |
+
<maxWeakCount>6</maxWeakCount>
|
94 |
+
<stageThreshold>-1.7856997251510620e+000</stageThreshold>
|
95 |
+
<weakClassifiers>
|
96 |
+
<_>
|
97 |
+
<internalNodes>
|
98 |
+
0 -1 34 2.7977079153060913e-002</internalNodes>
|
99 |
+
<leafValues>
|
100 |
+
-5.8424139022827148e-001 6.6850829124450684e-001</leafValues></_>
|
101 |
+
<_>
|
102 |
+
<internalNodes>
|
103 |
+
0 -1 171 1.9148588180541992e-002</internalNodes>
|
104 |
+
<leafValues>
|
105 |
+
-6.5457659959793091e-001 4.0804430842399597e-001</leafValues></_>
|
106 |
+
<_>
|
107 |
+
<internalNodes>
|
108 |
+
0 -1 7 1.1955041438341141e-002</internalNodes>
|
109 |
+
<leafValues>
|
110 |
+
-4.2002618312835693e-001 5.6217432022094727e-001</leafValues></_>
|
111 |
+
<_>
|
112 |
+
<internalNodes>
|
113 |
+
0 -1 45 -2.1218564361333847e-002</internalNodes>
|
114 |
+
<leafValues>
|
115 |
+
7.1812576055526733e-001 -3.0354043841362000e-001</leafValues></_>
|
116 |
+
<_>
|
117 |
+
<internalNodes>
|
118 |
+
0 -1 108 2.0117280655540526e-004</internalNodes>
|
119 |
+
<leafValues>
|
120 |
+
-6.1749500036239624e-001 3.5549193620681763e-001</leafValues></_>
|
121 |
+
<_>
|
122 |
+
<internalNodes>
|
123 |
+
0 -1 122 3.9725980604998767e-004</internalNodes>
|
124 |
+
<leafValues>
|
125 |
+
-2.6844096183776855e-001 7.6771658658981323e-001</leafValues></_></weakClassifiers></_>
|
126 |
+
<!-- stage 3 -->
|
127 |
+
<_>
|
128 |
+
<maxWeakCount>9</maxWeakCount>
|
129 |
+
<stageThreshold>-1.1837021112442017e+000</stageThreshold>
|
130 |
+
<weakClassifiers>
|
131 |
+
<_>
|
132 |
+
<internalNodes>
|
133 |
+
0 -1 202 -1.3291766867041588e-002</internalNodes>
|
134 |
+
<leafValues>
|
135 |
+
4.5248869061470032e-001 -5.8849954605102539e-001</leafValues></_>
|
136 |
+
<_>
|
137 |
+
<internalNodes>
|
138 |
+
0 -1 79 -4.8353265970945358e-002</internalNodes>
|
139 |
+
<leafValues>
|
140 |
+
7.0951640605926514e-001 -3.2546108961105347e-001</leafValues></_>
|
141 |
+
<_>
|
142 |
+
<internalNodes>
|
143 |
+
0 -1 22 2.6532993651926517e-003</internalNodes>
|
144 |
+
<leafValues>
|
145 |
+
-2.5343564152717590e-001 7.6588714122772217e-001</leafValues></_>
|
146 |
+
<_>
|
147 |
+
<internalNodes>
|
148 |
+
0 -1 66 -3.8548894226551056e-002</internalNodes>
|
149 |
+
<leafValues>
|
150 |
+
5.8126109838485718e-001 -3.0813106894493103e-001</leafValues></_>
|
151 |
+
<_>
|
152 |
+
<internalNodes>
|
153 |
+
0 -1 41 -6.8602780811488628e-004</internalNodes>
|
154 |
+
<leafValues>
|
155 |
+
2.6361095905303955e-001 -7.2226840257644653e-001</leafValues></_>
|
156 |
+
<_>
|
157 |
+
<internalNodes>
|
158 |
+
0 -1 69 -2.5726919993758202e-002</internalNodes>
|
159 |
+
<leafValues>
|
160 |
+
-8.7153857946395874e-001 1.9438524544239044e-001</leafValues></_>
|
161 |
+
<_>
|
162 |
+
<internalNodes>
|
163 |
+
0 -1 24 8.4192806389182806e-004</internalNodes>
|
164 |
+
<leafValues>
|
165 |
+
-3.6150649189949036e-001 5.2065432071685791e-001</leafValues></_>
|
166 |
+
<_>
|
167 |
+
<internalNodes>
|
168 |
+
0 -1 62 -2.6956878136843443e-003</internalNodes>
|
169 |
+
<leafValues>
|
170 |
+
5.9945529699325562e-001 -2.8344830870628357e-001</leafValues></_>
|
171 |
+
<_>
|
172 |
+
<internalNodes>
|
173 |
+
0 -1 112 3.0572075396776199e-002</internalNodes>
|
174 |
+
<leafValues>
|
175 |
+
-3.0688971281051636e-001 5.7261526584625244e-001</leafValues></_></weakClassifiers></_>
|
176 |
+
<!-- stage 4 -->
|
177 |
+
<_>
|
178 |
+
<maxWeakCount>8</maxWeakCount>
|
179 |
+
<stageThreshold>-1.4687808752059937e+000</stageThreshold>
|
180 |
+
<weakClassifiers>
|
181 |
+
<_>
|
182 |
+
<internalNodes>
|
183 |
+
0 -1 5 3.1486168503761292e-002</internalNodes>
|
184 |
+
<leafValues>
|
185 |
+
-5.7836848497390747e-001 3.7931033968925476e-001</leafValues></_>
|
186 |
+
<_>
|
187 |
+
<internalNodes>
|
188 |
+
0 -1 150 2.8311354108154774e-003</internalNodes>
|
189 |
+
<leafValues>
|
190 |
+
-5.7888329029083252e-001 3.2841828465461731e-001</leafValues></_>
|
191 |
+
<_>
|
192 |
+
<internalNodes>
|
193 |
+
0 -1 76 -4.2060948908329010e-002</internalNodes>
|
194 |
+
<leafValues>
|
195 |
+
5.5578106641769409e-001 -3.2662427425384521e-001</leafValues></_>
|
196 |
+
<_>
|
197 |
+
<internalNodes>
|
198 |
+
0 -1 115 6.2936875037848949e-003</internalNodes>
|
199 |
+
<leafValues>
|
200 |
+
-2.1032968163490295e-001 7.8646916151046753e-001</leafValues></_>
|
201 |
+
<_>
|
202 |
+
<internalNodes>
|
203 |
+
0 -1 51 7.0570126175880432e-002</internalNodes>
|
204 |
+
<leafValues>
|
205 |
+
-4.3683132529258728e-001 4.0298295021057129e-001</leafValues></_>
|
206 |
+
<_>
|
207 |
+
<internalNodes>
|
208 |
+
0 -1 135 2.5173835456371307e-003</internalNodes>
|
209 |
+
<leafValues>
|
210 |
+
-2.0461565256118774e-001 8.2858163118362427e-001</leafValues></_>
|
211 |
+
<_>
|
212 |
+
<internalNodes>
|
213 |
+
0 -1 102 1.5648975968360901e-003</internalNodes>
|
214 |
+
<leafValues>
|
215 |
+
-2.4848082661628723e-001 6.0209411382675171e-001</leafValues></_>
|
216 |
+
<_>
|
217 |
+
<internalNodes>
|
218 |
+
0 -1 177 -3.5970686003565788e-003</internalNodes>
|
219 |
+
<leafValues>
|
220 |
+
2.3294737935066223e-001 -6.5612471103668213e-001</leafValues></_></weakClassifiers></_>
|
221 |
+
<!-- stage 5 -->
|
222 |
+
<_>
|
223 |
+
<maxWeakCount>9</maxWeakCount>
|
224 |
+
<stageThreshold>-1.1029583215713501e+000</stageThreshold>
|
225 |
+
<weakClassifiers>
|
226 |
+
<_>
|
227 |
+
<internalNodes>
|
228 |
+
0 -1 27 -1.1257569491863251e-001</internalNodes>
|
229 |
+
<leafValues>
|
230 |
+
3.3181819319725037e-001 -5.3901344537734985e-001</leafValues></_>
|
231 |
+
<_>
|
232 |
+
<internalNodes>
|
233 |
+
0 -1 142 3.8014666642993689e-003</internalNodes>
|
234 |
+
<leafValues>
|
235 |
+
-3.6430206894874573e-001 4.5984184741973877e-001</leafValues></_>
|
236 |
+
<_>
|
237 |
+
<internalNodes>
|
238 |
+
0 -1 57 9.8789634648710489e-004</internalNodes>
|
239 |
+
<leafValues>
|
240 |
+
-2.6661416888237000e-001 5.6971323490142822e-001</leafValues></_>
|
241 |
+
<_>
|
242 |
+
<internalNodes>
|
243 |
+
0 -1 55 2.1719809621572495e-002</internalNodes>
|
244 |
+
<leafValues>
|
245 |
+
1.8432702124118805e-001 -8.2999354600906372e-001</leafValues></_>
|
246 |
+
<_>
|
247 |
+
<internalNodes>
|
248 |
+
0 -1 111 5.1051773130893707e-002</internalNodes>
|
249 |
+
<leafValues>
|
250 |
+
1.4391148090362549e-001 -9.4541704654693604e-001</leafValues></_>
|
251 |
+
<_>
|
252 |
+
<internalNodes>
|
253 |
+
0 -1 164 1.8956036074087024e-003</internalNodes>
|
254 |
+
<leafValues>
|
255 |
+
-6.0830104351043701e-001 2.6091885566711426e-001</leafValues></_>
|
256 |
+
<_>
|
257 |
+
<internalNodes>
|
258 |
+
0 -1 81 -5.8700828813016415e-003</internalNodes>
|
259 |
+
<leafValues>
|
260 |
+
6.9104760885238647e-001 -2.6916843652725220e-001</leafValues></_>
|
261 |
+
<_>
|
262 |
+
<internalNodes>
|
263 |
+
0 -1 116 -1.1522199492901564e-003</internalNodes>
|
264 |
+
<leafValues>
|
265 |
+
-6.9503885507583618e-001 2.4749211966991425e-001</leafValues></_>
|
266 |
+
<_>
|
267 |
+
<internalNodes>
|
268 |
+
0 -1 90 -5.1933946087956429e-003</internalNodes>
|
269 |
+
<leafValues>
|
270 |
+
5.8551025390625000e-001 -3.0389472842216492e-001</leafValues></_></weakClassifiers></_>
|
271 |
+
<!-- stage 6 -->
|
272 |
+
<_>
|
273 |
+
<maxWeakCount>9</maxWeakCount>
|
274 |
+
<stageThreshold>-9.0274518728256226e-001</stageThreshold>
|
275 |
+
<weakClassifiers>
|
276 |
+
<_>
|
277 |
+
<internalNodes>
|
278 |
+
0 -1 205 -1.4383997768163681e-002</internalNodes>
|
279 |
+
<leafValues>
|
280 |
+
4.5400592684745789e-001 -4.9917897582054138e-001</leafValues></_>
|
281 |
+
<_>
|
282 |
+
<internalNodes>
|
283 |
+
0 -1 114 -3.3369414508342743e-002</internalNodes>
|
284 |
+
<leafValues>
|
285 |
+
-9.3247985839843750e-001 1.4586758613586426e-001</leafValues></_>
|
286 |
+
<_>
|
287 |
+
<internalNodes>
|
288 |
+
0 -1 128 5.2380945999175310e-004</internalNodes>
|
289 |
+
<leafValues>
|
290 |
+
-2.8349643945693970e-001 6.4983856678009033e-001</leafValues></_>
|
291 |
+
<_>
|
292 |
+
<internalNodes>
|
293 |
+
0 -1 143 6.1231426661834121e-004</internalNodes>
|
294 |
+
<leafValues>
|
295 |
+
-1.8502233922481537e-001 6.5052211284637451e-001</leafValues></_>
|
296 |
+
<_>
|
297 |
+
<internalNodes>
|
298 |
+
0 -1 49 1.7017847858369350e-003</internalNodes>
|
299 |
+
<leafValues>
|
300 |
+
2.2008989751338959e-001 -7.2277534008026123e-001</leafValues></_>
|
301 |
+
<_>
|
302 |
+
<internalNodes>
|
303 |
+
0 -1 133 2.6139442343264818e-003</internalNodes>
|
304 |
+
<leafValues>
|
305 |
+
1.8238025903701782e-001 -7.6262325048446655e-001</leafValues></_>
|
306 |
+
<_>
|
307 |
+
<internalNodes>
|
308 |
+
0 -1 43 -2.0020073279738426e-003</internalNodes>
|
309 |
+
<leafValues>
|
310 |
+
5.6799399852752686e-001 -2.8219676017761230e-001</leafValues></_>
|
311 |
+
<_>
|
312 |
+
<internalNodes>
|
313 |
+
0 -1 119 1.9273828947916627e-003</internalNodes>
|
314 |
+
<leafValues>
|
315 |
+
-2.0913636684417725e-001 7.9203850030899048e-001</leafValues></_>
|
316 |
+
<_>
|
317 |
+
<internalNodes>
|
318 |
+
0 -1 134 -9.4476283993571997e-004</internalNodes>
|
319 |
+
<leafValues>
|
320 |
+
-8.2361942529678345e-001 2.4256958067417145e-001</leafValues></_></weakClassifiers></_>
|
321 |
+
<!-- stage 7 -->
|
322 |
+
<_>
|
323 |
+
<maxWeakCount>10</maxWeakCount>
|
324 |
+
<stageThreshold>-1.4518526792526245e+000</stageThreshold>
|
325 |
+
<weakClassifiers>
|
326 |
+
<_>
|
327 |
+
<internalNodes>
|
328 |
+
0 -1 162 1.6756314784288406e-002</internalNodes>
|
329 |
+
<leafValues>
|
330 |
+
-6.9359332323074341e-001 5.1373954862356186e-002</leafValues></_>
|
331 |
+
<_>
|
332 |
+
<internalNodes>
|
333 |
+
0 -1 16 2.4082964286208153e-002</internalNodes>
|
334 |
+
<leafValues>
|
335 |
+
-3.3989402651786804e-001 4.5332714915275574e-001</leafValues></_>
|
336 |
+
<_>
|
337 |
+
<internalNodes>
|
338 |
+
0 -1 186 1.2284796684980392e-003</internalNodes>
|
339 |
+
<leafValues>
|
340 |
+
-2.2297365963459015e-001 6.1439812183380127e-001</leafValues></_>
|
341 |
+
<_>
|
342 |
+
<internalNodes>
|
343 |
+
0 -1 59 -1.4379122294485569e-003</internalNodes>
|
344 |
+
<leafValues>
|
345 |
+
-6.9444245100021362e-001 2.0446482300758362e-001</leafValues></_>
|
346 |
+
<_>
|
347 |
+
<internalNodes>
|
348 |
+
0 -1 185 -1.8713285680860281e-003</internalNodes>
|
349 |
+
<leafValues>
|
350 |
+
6.7942184209823608e-001 -2.7580419182777405e-001</leafValues></_>
|
351 |
+
<_>
|
352 |
+
<internalNodes>
|
353 |
+
0 -1 190 -4.7389674000442028e-003</internalNodes>
|
354 |
+
<leafValues>
|
355 |
+
-7.0437240600585938e-001 2.6915156841278076e-001</leafValues></_>
|
356 |
+
<_>
|
357 |
+
<internalNodes>
|
358 |
+
0 -1 156 7.4071279959753156e-004</internalNodes>
|
359 |
+
<leafValues>
|
360 |
+
-2.9220902919769287e-001 5.3538239002227783e-001</leafValues></_>
|
361 |
+
<_>
|
362 |
+
<internalNodes>
|
363 |
+
0 -1 11 -2.2739455103874207e-001</internalNodes>
|
364 |
+
<leafValues>
|
365 |
+
6.6916191577911377e-001 -2.1987228095531464e-001</leafValues></_>
|
366 |
+
<_>
|
367 |
+
<internalNodes>
|
368 |
+
0 -1 155 -1.0255509987473488e-003</internalNodes>
|
369 |
+
<leafValues>
|
370 |
+
6.3346290588378906e-001 -2.2717863321304321e-001</leafValues></_>
|
371 |
+
<_>
|
372 |
+
<internalNodes>
|
373 |
+
0 -1 167 2.4775355122983456e-003</internalNodes>
|
374 |
+
<leafValues>
|
375 |
+
-5.4297816753387451e-001 3.1877547502517700e-001</leafValues></_></weakClassifiers></_>
|
376 |
+
<!-- stage 8 -->
|
377 |
+
<_>
|
378 |
+
<maxWeakCount>11</maxWeakCount>
|
379 |
+
<stageThreshold>-1.3153649568557739e+000</stageThreshold>
|
380 |
+
<weakClassifiers>
|
381 |
+
<_>
|
382 |
+
<internalNodes>
|
383 |
+
0 -1 6 1.9131936132907867e-002</internalNodes>
|
384 |
+
<leafValues>
|
385 |
+
-6.0168600082397461e-001 1.9141913950443268e-001</leafValues></_>
|
386 |
+
<_>
|
387 |
+
<internalNodes>
|
388 |
+
0 -1 42 -4.5855185016989708e-003</internalNodes>
|
389 |
+
<leafValues>
|
390 |
+
2.1901632845401764e-001 -5.7136750221252441e-001</leafValues></_>
|
391 |
+
<_>
|
392 |
+
<internalNodes>
|
393 |
+
0 -1 53 -1.9026801455765963e-003</internalNodes>
|
394 |
+
<leafValues>
|
395 |
+
-8.0075079202651978e-001 1.6502076387405396e-001</leafValues></_>
|
396 |
+
<_>
|
397 |
+
<internalNodes>
|
398 |
+
0 -1 19 -3.2767035067081451e-002</internalNodes>
|
399 |
+
<leafValues>
|
400 |
+
5.1496404409408569e-001 -2.5474679470062256e-001</leafValues></_>
|
401 |
+
<_>
|
402 |
+
<internalNodes>
|
403 |
+
0 -1 129 6.3941581174731255e-004</internalNodes>
|
404 |
+
<leafValues>
|
405 |
+
-1.9851709902286530e-001 6.7218667268753052e-001</leafValues></_>
|
406 |
+
<_>
|
407 |
+
<internalNodes>
|
408 |
+
0 -1 201 1.5573646873235703e-002</internalNodes>
|
409 |
+
<leafValues>
|
410 |
+
-1.7564551532268524e-001 7.0536541938781738e-001</leafValues></_>
|
411 |
+
<_>
|
412 |
+
<internalNodes>
|
413 |
+
0 -1 200 9.5508026424795389e-004</internalNodes>
|
414 |
+
<leafValues>
|
415 |
+
-1.9691802561283112e-001 6.1125624179840088e-001</leafValues></_>
|
416 |
+
<_>
|
417 |
+
<internalNodes>
|
418 |
+
0 -1 67 9.0427603572607040e-003</internalNodes>
|
419 |
+
<leafValues>
|
420 |
+
1.6518253087997437e-001 -8.7012130022048950e-001</leafValues></_>
|
421 |
+
<_>
|
422 |
+
<internalNodes>
|
423 |
+
0 -1 77 8.1576988101005554e-002</internalNodes>
|
424 |
+
<leafValues>
|
425 |
+
1.4075902104377747e-001 -8.4871828556060791e-001</leafValues></_>
|
426 |
+
<_>
|
427 |
+
<internalNodes>
|
428 |
+
0 -1 166 -5.1994959358125925e-004</internalNodes>
|
429 |
+
<leafValues>
|
430 |
+
2.1803210675716400e-001 -5.4628211259841919e-001</leafValues></_>
|
431 |
+
<_>
|
432 |
+
<internalNodes>
|
433 |
+
0 -1 70 -2.3009868338704109e-002</internalNodes>
|
434 |
+
<leafValues>
|
435 |
+
-7.9586231708526611e-001 1.5989699959754944e-001</leafValues></_></weakClassifiers></_>
|
436 |
+
<!-- stage 9 -->
|
437 |
+
<_>
|
438 |
+
<maxWeakCount>13</maxWeakCount>
|
439 |
+
<stageThreshold>-1.4625015258789063e+000</stageThreshold>
|
440 |
+
<weakClassifiers>
|
441 |
+
<_>
|
442 |
+
<internalNodes>
|
443 |
+
0 -1 1 2.6759501546621323e-002</internalNodes>
|
444 |
+
<leafValues>
|
445 |
+
-6.0482984781265259e-001 1.4906832575798035e-001</leafValues></_>
|
446 |
+
<_>
|
447 |
+
<internalNodes>
|
448 |
+
0 -1 165 3.0343931168317795e-002</internalNodes>
|
449 |
+
<leafValues>
|
450 |
+
-4.7357541322708130e-001 2.6279065012931824e-001</leafValues></_>
|
451 |
+
<_>
|
452 |
+
<internalNodes>
|
453 |
+
0 -1 161 1.2678599450737238e-003</internalNodes>
|
454 |
+
<leafValues>
|
455 |
+
-1.9493983685970306e-001 6.9734728336334229e-001</leafValues></_>
|
456 |
+
<_>
|
457 |
+
<internalNodes>
|
458 |
+
0 -1 30 1.8607920501381159e-003</internalNodes>
|
459 |
+
<leafValues>
|
460 |
+
1.5611934661865234e-001 -9.0542370080947876e-001</leafValues></_>
|
461 |
+
<_>
|
462 |
+
<internalNodes>
|
463 |
+
0 -1 157 -1.3872641138732433e-003</internalNodes>
|
464 |
+
<leafValues>
|
465 |
+
5.3263407945632935e-001 -3.0192303657531738e-001</leafValues></_>
|
466 |
+
<_>
|
467 |
+
<internalNodes>
|
468 |
+
0 -1 180 -6.9969398900866508e-003</internalNodes>
|
469 |
+
<leafValues>
|
470 |
+
-9.4549953937530518e-001 1.5575224161148071e-001</leafValues></_>
|
471 |
+
<_>
|
472 |
+
<internalNodes>
|
473 |
+
0 -1 158 1.1245720088481903e-003</internalNodes>
|
474 |
+
<leafValues>
|
475 |
+
-2.6688691973686218e-001 5.5608308315277100e-001</leafValues></_>
|
476 |
+
<_>
|
477 |
+
<internalNodes>
|
478 |
+
0 -1 160 -2.8279949910938740e-003</internalNodes>
|
479 |
+
<leafValues>
|
480 |
+
-9.1861122846603394e-001 1.3309663534164429e-001</leafValues></_>
|
481 |
+
<_>
|
482 |
+
<internalNodes>
|
483 |
+
0 -1 58 7.1019242750480771e-004</internalNodes>
|
484 |
+
<leafValues>
|
485 |
+
-3.0977895855903625e-001 4.3846300244331360e-001</leafValues></_>
|
486 |
+
<_>
|
487 |
+
<internalNodes>
|
488 |
+
0 -1 8 -4.1933014988899231e-002</internalNodes>
|
489 |
+
<leafValues>
|
490 |
+
-8.9102542400360107e-001 1.5866196155548096e-001</leafValues></_>
|
491 |
+
<_>
|
492 |
+
<internalNodes>
|
493 |
+
0 -1 87 1.6568358987569809e-002</internalNodes>
|
494 |
+
<leafValues>
|
495 |
+
1.2731756269931793e-001 -8.5553413629531860e-001</leafValues></_>
|
496 |
+
<_>
|
497 |
+
<internalNodes>
|
498 |
+
0 -1 64 2.0309074316173792e-003</internalNodes>
|
499 |
+
<leafValues>
|
500 |
+
-2.3260365426540375e-001 6.7330485582351685e-001</leafValues></_>
|
501 |
+
<_>
|
502 |
+
<internalNodes>
|
503 |
+
0 -1 159 -1.7069760942831635e-003</internalNodes>
|
504 |
+
<leafValues>
|
505 |
+
-7.1925789117813110e-001 1.9108834862709045e-001</leafValues></_></weakClassifiers></_>
|
506 |
+
<!-- stage 10 -->
|
507 |
+
<_>
|
508 |
+
<maxWeakCount>14</maxWeakCount>
|
509 |
+
<stageThreshold>-1.4959813356399536e+000</stageThreshold>
|
510 |
+
<weakClassifiers>
|
511 |
+
<_>
|
512 |
+
<internalNodes>
|
513 |
+
0 -1 4 1.4695923775434494e-002</internalNodes>
|
514 |
+
<leafValues>
|
515 |
+
-6.2167906761169434e-001 2.1172638237476349e-001</leafValues></_>
|
516 |
+
<_>
|
517 |
+
<internalNodes>
|
518 |
+
0 -1 50 -1.6501215286552906e-003</internalNodes>
|
519 |
+
<leafValues>
|
520 |
+
1.9353884458541870e-001 -5.7780367136001587e-001</leafValues></_>
|
521 |
+
<_>
|
522 |
+
<internalNodes>
|
523 |
+
0 -1 123 7.0121872704476118e-004</internalNodes>
|
524 |
+
<leafValues>
|
525 |
+
-2.2979106009006500e-001 5.3033334016799927e-001</leafValues></_>
|
526 |
+
<_>
|
527 |
+
<internalNodes>
|
528 |
+
0 -1 52 9.4158272258937359e-004</internalNodes>
|
529 |
+
<leafValues>
|
530 |
+
1.6849038004875183e-001 -7.4897718429565430e-001</leafValues></_>
|
531 |
+
<_>
|
532 |
+
<internalNodes>
|
533 |
+
0 -1 124 -2.0684124901890755e-003</internalNodes>
|
534 |
+
<leafValues>
|
535 |
+
6.7936712503433228e-001 -1.9317412376403809e-001</leafValues></_>
|
536 |
+
<_>
|
537 |
+
<internalNodes>
|
538 |
+
0 -1 23 -1.8305826233699918e-004</internalNodes>
|
539 |
+
<leafValues>
|
540 |
+
-7.0275229215621948e-001 1.7971208691596985e-001</leafValues></_>
|
541 |
+
<_>
|
542 |
+
<internalNodes>
|
543 |
+
0 -1 198 5.5587477982044220e-004</internalNodes>
|
544 |
+
<leafValues>
|
545 |
+
-2.4448128044605255e-001 5.0703984498977661e-001</leafValues></_>
|
546 |
+
<_>
|
547 |
+
<internalNodes>
|
548 |
+
0 -1 152 4.3448276119306684e-004</internalNodes>
|
549 |
+
<leafValues>
|
550 |
+
1.3497908413410187e-001 -8.5621362924575806e-001</leafValues></_>
|
551 |
+
<_>
|
552 |
+
<internalNodes>
|
553 |
+
0 -1 197 -1.2359691318124533e-003</internalNodes>
|
554 |
+
<leafValues>
|
555 |
+
6.1710417270660400e-001 -2.2301279008388519e-001</leafValues></_>
|
556 |
+
<_>
|
557 |
+
<internalNodes>
|
558 |
+
0 -1 153 -6.9627340417355299e-004</internalNodes>
|
559 |
+
<leafValues>
|
560 |
+
-6.4706987142562866e-001 2.3951497673988342e-001</leafValues></_>
|
561 |
+
<_>
|
562 |
+
<internalNodes>
|
563 |
+
0 -1 175 1.0683680884540081e-003</internalNodes>
|
564 |
+
<leafValues>
|
565 |
+
-2.8343605995178223e-001 4.9318629503250122e-001</leafValues></_>
|
566 |
+
<_>
|
567 |
+
<internalNodes>
|
568 |
+
0 -1 168 1.7104238213505596e-004</internalNodes>
|
569 |
+
<leafValues>
|
570 |
+
-2.7171039581298828e-001 4.2520308494567871e-001</leafValues></_>
|
571 |
+
<_>
|
572 |
+
<internalNodes>
|
573 |
+
0 -1 144 8.2368971779942513e-003</internalNodes>
|
574 |
+
<leafValues>
|
575 |
+
1.6359315812587738e-001 -7.3864609003067017e-001</leafValues></_>
|
576 |
+
<_>
|
577 |
+
<internalNodes>
|
578 |
+
0 -1 131 -5.9884190559387207e-003</internalNodes>
|
579 |
+
<leafValues>
|
580 |
+
3.8030940294265747e-001 -3.0763563513755798e-001</leafValues></_></weakClassifiers></_>
|
581 |
+
<!-- stage 11 -->
|
582 |
+
<_>
|
583 |
+
<maxWeakCount>9</maxWeakCount>
|
584 |
+
<stageThreshold>-1.1183819770812988e+000</stageThreshold>
|
585 |
+
<weakClassifiers>
|
586 |
+
<_>
|
587 |
+
<internalNodes>
|
588 |
+
0 -1 187 -1.4863962307572365e-002</internalNodes>
|
589 |
+
<leafValues>
|
590 |
+
1.1989101022481918e-001 -6.6138857603073120e-001</leafValues></_>
|
591 |
+
<_>
|
592 |
+
<internalNodes>
|
593 |
+
0 -1 117 2.4736612103879452e-003</internalNodes>
|
594 |
+
<leafValues>
|
595 |
+
-5.2778661251068115e-001 2.3012125492095947e-001</leafValues></_>
|
596 |
+
<_>
|
597 |
+
<internalNodes>
|
598 |
+
0 -1 71 -4.8899287357926369e-003</internalNodes>
|
599 |
+
<leafValues>
|
600 |
+
6.0186779499053955e-001 -2.0681641995906830e-001</leafValues></_>
|
601 |
+
<_>
|
602 |
+
<internalNodes>
|
603 |
+
0 -1 174 1.5796069055795670e-002</internalNodes>
|
604 |
+
<leafValues>
|
605 |
+
1.4610521495342255e-001 -8.2099527120590210e-001</leafValues></_>
|
606 |
+
<_>
|
607 |
+
<internalNodes>
|
608 |
+
0 -1 104 5.9720675926655531e-004</internalNodes>
|
609 |
+
<leafValues>
|
610 |
+
-2.3587301373481750e-001 4.8323699831962585e-001</leafValues></_>
|
611 |
+
<_>
|
612 |
+
<internalNodes>
|
613 |
+
0 -1 103 -1.9448818638920784e-003</internalNodes>
|
614 |
+
<leafValues>
|
615 |
+
6.4417767524719238e-001 -2.0953170955181122e-001</leafValues></_>
|
616 |
+
<_>
|
617 |
+
<internalNodes>
|
618 |
+
0 -1 154 1.9433414854574949e-004</internalNodes>
|
619 |
+
<leafValues>
|
620 |
+
2.0600238442420959e-001 -7.2418999671936035e-001</leafValues></_>
|
621 |
+
<_>
|
622 |
+
<internalNodes>
|
623 |
+
0 -1 163 -1.5097535215318203e-002</internalNodes>
|
624 |
+
<leafValues>
|
625 |
+
-8.7151485681533813e-001 1.2594890594482422e-001</leafValues></_>
|
626 |
+
<_>
|
627 |
+
<internalNodes>
|
628 |
+
0 -1 82 -3.9843879640102386e-003</internalNodes>
|
629 |
+
<leafValues>
|
630 |
+
4.3801131844520569e-001 -2.9676589369773865e-001</leafValues></_></weakClassifiers></_>
|
631 |
+
<!-- stage 12 -->
|
632 |
+
<_>
|
633 |
+
<maxWeakCount>12</maxWeakCount>
|
634 |
+
<stageThreshold>-1.5434337854385376e+000</stageThreshold>
|
635 |
+
<weakClassifiers>
|
636 |
+
<_>
|
637 |
+
<internalNodes>
|
638 |
+
0 -1 105 1.1273270938545465e-003</internalNodes>
|
639 |
+
<leafValues>
|
640 |
+
-4.7976878285408020e-001 3.6627906560897827e-001</leafValues></_>
|
641 |
+
<_>
|
642 |
+
<internalNodes>
|
643 |
+
0 -1 95 9.7806821577250957e-004</internalNodes>
|
644 |
+
<leafValues>
|
645 |
+
-2.7689707279205322e-001 5.1295894384384155e-001</leafValues></_>
|
646 |
+
<_>
|
647 |
+
<internalNodes>
|
648 |
+
0 -1 15 1.6528377309441566e-002</internalNodes>
|
649 |
+
<leafValues>
|
650 |
+
-4.5259797573089600e-001 2.4290211498737335e-001</leafValues></_>
|
651 |
+
<_>
|
652 |
+
<internalNodes>
|
653 |
+
0 -1 137 1.1040373938158154e-003</internalNodes>
|
654 |
+
<leafValues>
|
655 |
+
-3.2714816927909851e-001 3.4566244482994080e-001</leafValues></_>
|
656 |
+
<_>
|
657 |
+
<internalNodes>
|
658 |
+
0 -1 109 -1.7780361231416464e-003</internalNodes>
|
659 |
+
<leafValues>
|
660 |
+
-6.9511681795120239e-001 1.8829824030399323e-001</leafValues></_>
|
661 |
+
<_>
|
662 |
+
<internalNodes>
|
663 |
+
0 -1 92 4.6280334936454892e-004</internalNodes>
|
664 |
+
<leafValues>
|
665 |
+
-2.3864887654781342e-001 5.3136289119720459e-001</leafValues></_>
|
666 |
+
<_>
|
667 |
+
<internalNodes>
|
668 |
+
0 -1 100 -1.4975425438024104e-004</internalNodes>
|
669 |
+
<leafValues>
|
670 |
+
-6.6509884595870972e-001 2.1483559906482697e-001</leafValues></_>
|
671 |
+
<_>
|
672 |
+
<internalNodes>
|
673 |
+
0 -1 83 -1.4625370968133211e-003</internalNodes>
|
674 |
+
<leafValues>
|
675 |
+
2.6556470990180969e-001 -4.9002227187156677e-001</leafValues></_>
|
676 |
+
<_>
|
677 |
+
<internalNodes>
|
678 |
+
0 -1 14 -2.6019819779321551e-004</internalNodes>
|
679 |
+
<leafValues>
|
680 |
+
-7.0160359144210815e-001 1.6359129548072815e-001</leafValues></_>
|
681 |
+
<_>
|
682 |
+
<internalNodes>
|
683 |
+
0 -1 14 2.2371641534846276e-004</internalNodes>
|
684 |
+
<leafValues>
|
685 |
+
1.2919521331787109e-001 -6.9767206907272339e-001</leafValues></_>
|
686 |
+
<_>
|
687 |
+
<internalNodes>
|
688 |
+
0 -1 194 -1.0447315871715546e-002</internalNodes>
|
689 |
+
<leafValues>
|
690 |
+
2.1837629377841949e-001 -4.6482038497924805e-001</leafValues></_>
|
691 |
+
<_>
|
692 |
+
<internalNodes>
|
693 |
+
0 -1 20 -9.2897024005651474e-003</internalNodes>
|
694 |
+
<leafValues>
|
695 |
+
6.4918082952499390e-001 -2.0495061576366425e-001</leafValues></_></weakClassifiers></_>
|
696 |
+
<!-- stage 13 -->
|
697 |
+
<_>
|
698 |
+
<maxWeakCount>12</maxWeakCount>
|
699 |
+
<stageThreshold>-1.4440233707427979e+000</stageThreshold>
|
700 |
+
<weakClassifiers>
|
701 |
+
<_>
|
702 |
+
<internalNodes>
|
703 |
+
0 -1 9 8.5356216877698898e-003</internalNodes>
|
704 |
+
<leafValues>
|
705 |
+
-5.3151458501815796e-001 2.2357723116874695e-001</leafValues></_>
|
706 |
+
<_>
|
707 |
+
<internalNodes>
|
708 |
+
0 -1 182 1.5294685726985335e-003</internalNodes>
|
709 |
+
<leafValues>
|
710 |
+
-6.0895460844039917e-001 1.7429886758327484e-001</leafValues></_>
|
711 |
+
<_>
|
712 |
+
<internalNodes>
|
713 |
+
0 -1 40 1.8610086990520358e-003</internalNodes>
|
714 |
+
<leafValues>
|
715 |
+
-2.5480428338050842e-001 4.2150071263313293e-001</leafValues></_>
|
716 |
+
<_>
|
717 |
+
<internalNodes>
|
718 |
+
0 -1 176 1.5735558699816465e-003</internalNodes>
|
719 |
+
<leafValues>
|
720 |
+
-1.6832062602043152e-001 4.8567819595336914e-001</leafValues></_>
|
721 |
+
<_>
|
722 |
+
<internalNodes>
|
723 |
+
0 -1 179 -6.7992787808179855e-004</internalNodes>
|
724 |
+
<leafValues>
|
725 |
+
3.9894598722457886e-001 -3.0744269490242004e-001</leafValues></_>
|
726 |
+
<_>
|
727 |
+
<internalNodes>
|
728 |
+
0 -1 151 4.9857296049594879e-002</internalNodes>
|
729 |
+
<leafValues>
|
730 |
+
-1.5370152890682220e-001 6.7523348331451416e-001</leafValues></_>
|
731 |
+
<_>
|
732 |
+
<internalNodes>
|
733 |
+
0 -1 139 -2.8339058160781860e-002</internalNodes>
|
734 |
+
<leafValues>
|
735 |
+
5.0540882349014282e-001 -2.9473617672920227e-001</leafValues></_>
|
736 |
+
<_>
|
737 |
+
<internalNodes>
|
738 |
+
0 -1 72 -7.7956825494766235e-002</internalNodes>
|
739 |
+
<leafValues>
|
740 |
+
4.0387043356895447e-001 -3.0287107825279236e-001</leafValues></_>
|
741 |
+
<_>
|
742 |
+
<internalNodes>
|
743 |
+
0 -1 89 -3.6115488037467003e-003</internalNodes>
|
744 |
+
<leafValues>
|
745 |
+
6.3856112957000732e-001 -1.6917882859706879e-001</leafValues></_>
|
746 |
+
<_>
|
747 |
+
<internalNodes>
|
748 |
+
0 -1 207 3.3940275898203254e-004</internalNodes>
|
749 |
+
<leafValues>
|
750 |
+
1.3713537156581879e-001 -7.8120291233062744e-001</leafValues></_>
|
751 |
+
<_>
|
752 |
+
<internalNodes>
|
753 |
+
0 -1 39 4.0043061599135399e-003</internalNodes>
|
754 |
+
<leafValues>
|
755 |
+
1.5233094990253448e-001 -6.3939732313156128e-001</leafValues></_>
|
756 |
+
<_>
|
757 |
+
<internalNodes>
|
758 |
+
0 -1 65 -4.4601649278774858e-004</internalNodes>
|
759 |
+
<leafValues>
|
760 |
+
2.1333815157413483e-001 -4.7728902101516724e-001</leafValues></_></weakClassifiers></_>
|
761 |
+
<!-- stage 14 -->
|
762 |
+
<_>
|
763 |
+
<maxWeakCount>13</maxWeakCount>
|
764 |
+
<stageThreshold>-1.2532578706741333e+000</stageThreshold>
|
765 |
+
<weakClassifiers>
|
766 |
+
<_>
|
767 |
+
<internalNodes>
|
768 |
+
0 -1 204 -2.0341124385595322e-002</internalNodes>
|
769 |
+
<leafValues>
|
770 |
+
2.4170616269111633e-001 -4.9161517620086670e-001</leafValues></_>
|
771 |
+
<_>
|
772 |
+
<internalNodes>
|
773 |
+
0 -1 169 8.9040049351751804e-004</internalNodes>
|
774 |
+
<leafValues>
|
775 |
+
-2.8570893406867981e-001 4.2666998505592346e-001</leafValues></_>
|
776 |
+
<_>
|
777 |
+
<internalNodes>
|
778 |
+
0 -1 60 -3.3259526826441288e-003</internalNodes>
|
779 |
+
<leafValues>
|
780 |
+
4.2626520991325378e-001 -2.3811897635459900e-001</leafValues></_>
|
781 |
+
<_>
|
782 |
+
<internalNodes>
|
783 |
+
0 -1 38 -3.1714607030153275e-002</internalNodes>
|
784 |
+
<leafValues>
|
785 |
+
-8.5494768619537354e-001 1.1712870001792908e-001</leafValues></_>
|
786 |
+
<_>
|
787 |
+
<internalNodes>
|
788 |
+
0 -1 31 -1.1553820222616196e-002</internalNodes>
|
789 |
+
<leafValues>
|
790 |
+
2.2675493359565735e-001 -4.9640509486198425e-001</leafValues></_>
|
791 |
+
<_>
|
792 |
+
<internalNodes>
|
793 |
+
0 -1 80 -6.7727260291576385e-002</internalNodes>
|
794 |
+
<leafValues>
|
795 |
+
-8.6705064773559570e-001 9.8765812814235687e-002</leafValues></_>
|
796 |
+
<_>
|
797 |
+
<internalNodes>
|
798 |
+
0 -1 63 -3.1611192971467972e-003</internalNodes>
|
799 |
+
<leafValues>
|
800 |
+
3.9449846744537354e-001 -2.8210711479187012e-001</leafValues></_>
|
801 |
+
<_>
|
802 |
+
<internalNodes>
|
803 |
+
0 -1 149 4.3221906526014209e-004</internalNodes>
|
804 |
+
<leafValues>
|
805 |
+
1.1805476248264313e-001 -9.0178310871124268e-001</leafValues></_>
|
806 |
+
<_>
|
807 |
+
<internalNodes>
|
808 |
+
0 -1 188 -2.2296360111795366e-004</internalNodes>
|
809 |
+
<leafValues>
|
810 |
+
1.7324598133563995e-001 -5.2877873182296753e-001</leafValues></_>
|
811 |
+
<_>
|
812 |
+
<internalNodes>
|
813 |
+
0 -1 120 -2.1440195851027966e-003</internalNodes>
|
814 |
+
<leafValues>
|
815 |
+
5.5513423681259155e-001 -1.9791823625564575e-001</leafValues></_>
|
816 |
+
<_>
|
817 |
+
<internalNodes>
|
818 |
+
0 -1 113 -4.5122690498828888e-003</internalNodes>
|
819 |
+
<leafValues>
|
820 |
+
5.5083745718002319e-001 -1.8810540437698364e-001</leafValues></_>
|
821 |
+
<_>
|
822 |
+
<internalNodes>
|
823 |
+
0 -1 130 -3.5149464383721352e-003</internalNodes>
|
824 |
+
<leafValues>
|
825 |
+
5.5467557907104492e-001 -2.2856147587299347e-001</leafValues></_>
|
826 |
+
<_>
|
827 |
+
<internalNodes>
|
828 |
+
0 -1 121 -4.4786706566810608e-003</internalNodes>
|
829 |
+
<leafValues>
|
830 |
+
-7.9106998443603516e-001 1.7836479842662811e-001</leafValues></_></weakClassifiers></_>
|
831 |
+
<!-- stage 15 -->
|
832 |
+
<_>
|
833 |
+
<maxWeakCount>15</maxWeakCount>
|
834 |
+
<stageThreshold>-1.1898330450057983e+000</stageThreshold>
|
835 |
+
<weakClassifiers>
|
836 |
+
<_>
|
837 |
+
<internalNodes>
|
838 |
+
0 -1 0 1.5206767246127129e-002</internalNodes>
|
839 |
+
<leafValues>
|
840 |
+
-4.9173194169998169e-001 2.7093595266342163e-001</leafValues></_>
|
841 |
+
<_>
|
842 |
+
<internalNodes>
|
843 |
+
0 -1 125 6.9564773002639413e-004</internalNodes>
|
844 |
+
<leafValues>
|
845 |
+
-2.3066598176956177e-001 5.4028344154357910e-001</leafValues></_>
|
846 |
+
<_>
|
847 |
+
<internalNodes>
|
848 |
+
0 -1 125 -8.3668017759919167e-004</internalNodes>
|
849 |
+
<leafValues>
|
850 |
+
4.4658055901527405e-001 -2.7778497338294983e-001</leafValues></_>
|
851 |
+
<_>
|
852 |
+
<internalNodes>
|
853 |
+
0 -1 91 -3.8321319967508316e-002</internalNodes>
|
854 |
+
<leafValues>
|
855 |
+
-7.9069298505783081e-001 1.8700349330902100e-001</leafValues></_>
|
856 |
+
<_>
|
857 |
+
<internalNodes>
|
858 |
+
0 -1 207 -2.1063965687062591e-004</internalNodes>
|
859 |
+
<leafValues>
|
860 |
+
-6.3163763284683228e-001 1.8656146526336670e-001</leafValues></_>
|
861 |
+
<_>
|
862 |
+
<internalNodes>
|
863 |
+
0 -1 61 3.6907330155372620e-002</internalNodes>
|
864 |
+
<leafValues>
|
865 |
+
9.9319733679294586e-002 -7.6762360334396362e-001</leafValues></_>
|
866 |
+
<_>
|
867 |
+
<internalNodes>
|
868 |
+
0 -1 85 8.1071127206087112e-003</internalNodes>
|
869 |
+
<leafValues>
|
870 |
+
-2.8561261296272278e-001 3.4748569130897522e-001</leafValues></_>
|
871 |
+
<_>
|
872 |
+
<internalNodes>
|
873 |
+
0 -1 189 6.2815943965688348e-004</internalNodes>
|
874 |
+
<leafValues>
|
875 |
+
1.6656193137168884e-001 -5.4635977745056152e-001</leafValues></_>
|
876 |
+
<_>
|
877 |
+
<internalNodes>
|
878 |
+
0 -1 86 2.8582263621501625e-004</internalNodes>
|
879 |
+
<leafValues>
|
880 |
+
-2.4100163578987122e-001 4.5410770177841187e-001</leafValues></_>
|
881 |
+
<_>
|
882 |
+
<internalNodes>
|
883 |
+
0 -1 173 -1.9862279295921326e-002</internalNodes>
|
884 |
+
<leafValues>
|
885 |
+
-9.4317340850830078e-001 1.2513674795627594e-001</leafValues></_>
|
886 |
+
<_>
|
887 |
+
<internalNodes>
|
888 |
+
0 -1 96 1.1506280861794949e-003</internalNodes>
|
889 |
+
<leafValues>
|
890 |
+
-2.4514634907245636e-001 4.6452957391738892e-001</leafValues></_>
|
891 |
+
<_>
|
892 |
+
<internalNodes>
|
893 |
+
0 -1 29 2.3451185552403331e-004</internalNodes>
|
894 |
+
<leafValues>
|
895 |
+
1.2489952147006989e-001 -8.0278074741363525e-001</leafValues></_>
|
896 |
+
<_>
|
897 |
+
<internalNodes>
|
898 |
+
0 -1 101 6.7837134702131152e-004</internalNodes>
|
899 |
+
<leafValues>
|
900 |
+
-2.5017899274826050e-001 4.3841627240180969e-001</leafValues></_>
|
901 |
+
<_>
|
902 |
+
<internalNodes>
|
903 |
+
0 -1 17 3.1583159579895437e-004</internalNodes>
|
904 |
+
<leafValues>
|
905 |
+
1.5951988101005554e-001 -7.4524724483489990e-001</leafValues></_>
|
906 |
+
<_>
|
907 |
+
<internalNodes>
|
908 |
+
0 -1 110 7.2623658925294876e-003</internalNodes>
|
909 |
+
<leafValues>
|
910 |
+
1.2511830031871796e-001 -6.5659755468368530e-001</leafValues></_></weakClassifiers></_>
|
911 |
+
<!-- stage 16 -->
|
912 |
+
<_>
|
913 |
+
<maxWeakCount>15</maxWeakCount>
|
914 |
+
<stageThreshold>-1.2416906356811523e+000</stageThreshold>
|
915 |
+
<weakClassifiers>
|
916 |
+
<_>
|
917 |
+
<internalNodes>
|
918 |
+
0 -1 2 7.5144092552363873e-003</internalNodes>
|
919 |
+
<leafValues>
|
920 |
+
-5.9518074989318848e-001 5.3793102502822876e-002</leafValues></_>
|
921 |
+
<_>
|
922 |
+
<internalNodes>
|
923 |
+
0 -1 98 -6.4494344405829906e-004</internalNodes>
|
924 |
+
<leafValues>
|
925 |
+
2.0429474115371704e-001 -4.3661779165267944e-001</leafValues></_>
|
926 |
+
<_>
|
927 |
+
<internalNodes>
|
928 |
+
0 -1 196 3.3831471228040755e-004</internalNodes>
|
929 |
+
<leafValues>
|
930 |
+
-2.1566553413867950e-001 4.7118204832077026e-001</leafValues></_>
|
931 |
+
<_>
|
932 |
+
<internalNodes>
|
933 |
+
0 -1 73 2.8320802375674248e-003</internalNodes>
|
934 |
+
<leafValues>
|
935 |
+
1.3322307169437408e-001 -8.3729231357574463e-001</leafValues></_>
|
936 |
+
<_>
|
937 |
+
<internalNodes>
|
938 |
+
0 -1 199 1.6218879027292132e-003</internalNodes>
|
939 |
+
<leafValues>
|
940 |
+
-2.0889574289321899e-001 4.7114694118499756e-001</leafValues></_>
|
941 |
+
<_>
|
942 |
+
<internalNodes>
|
943 |
+
0 -1 10 2.7122153551317751e-004</internalNodes>
|
944 |
+
<leafValues>
|
945 |
+
1.1475630849599838e-001 -7.8029519319534302e-001</leafValues></_>
|
946 |
+
<_>
|
947 |
+
<internalNodes>
|
948 |
+
0 -1 170 8.8358242064714432e-003</internalNodes>
|
949 |
+
<leafValues>
|
950 |
+
1.2460929155349731e-001 -7.6791721582412720e-001</leafValues></_>
|
951 |
+
<_>
|
952 |
+
<internalNodes>
|
953 |
+
0 -1 106 9.7634072881191969e-004</internalNodes>
|
954 |
+
<leafValues>
|
955 |
+
-2.0806105434894562e-001 5.1318311691284180e-001</leafValues></_>
|
956 |
+
<_>
|
957 |
+
<internalNodes>
|
958 |
+
0 -1 107 -2.1239042282104492e-002</internalNodes>
|
959 |
+
<leafValues>
|
960 |
+
-8.7171542644500732e-001 1.2721680104732513e-001</leafValues></_>
|
961 |
+
<_>
|
962 |
+
<internalNodes>
|
963 |
+
0 -1 97 7.1797124110162258e-004</internalNodes>
|
964 |
+
<leafValues>
|
965 |
+
-3.0763280391693115e-001 3.7504923343658447e-001</leafValues></_>
|
966 |
+
<_>
|
967 |
+
<internalNodes>
|
968 |
+
0 -1 32 2.7504155412316322e-002</internalNodes>
|
969 |
+
<leafValues>
|
970 |
+
1.5651945769786835e-001 -7.9516488313674927e-001</leafValues></_>
|
971 |
+
<_>
|
972 |
+
<internalNodes>
|
973 |
+
0 -1 178 1.0624636197462678e-003</internalNodes>
|
974 |
+
<leafValues>
|
975 |
+
1.3473348319530487e-001 -6.9174814224243164e-001</leafValues></_>
|
976 |
+
<_>
|
977 |
+
<internalNodes>
|
978 |
+
0 -1 33 -8.1248432397842407e-002</internalNodes>
|
979 |
+
<leafValues>
|
980 |
+
-8.5117286443710327e-001 1.0601779073476791e-001</leafValues></_>
|
981 |
+
<_>
|
982 |
+
<internalNodes>
|
983 |
+
0 -1 140 -2.2936165332794189e-002</internalNodes>
|
984 |
+
<leafValues>
|
985 |
+
3.9202499389648438e-001 -2.9867398738861084e-001</leafValues></_>
|
986 |
+
<_>
|
987 |
+
<internalNodes>
|
988 |
+
0 -1 146 -1.3326616026461124e-003</internalNodes>
|
989 |
+
<leafValues>
|
990 |
+
4.7240665555000305e-001 -2.6287403702735901e-001</leafValues></_></weakClassifiers></_>
|
991 |
+
<!-- stage 17 -->
|
992 |
+
<_>
|
993 |
+
<maxWeakCount>13</maxWeakCount>
|
994 |
+
<stageThreshold>-1.3383979797363281e+000</stageThreshold>
|
995 |
+
<weakClassifiers>
|
996 |
+
<_>
|
997 |
+
<internalNodes>
|
998 |
+
0 -1 3 3.2254494726657867e-002</internalNodes>
|
999 |
+
<leafValues>
|
1000 |
+
-6.5151512622833252e-001 7.9947575926780701e-002</leafValues></_>
|
1001 |
+
<_>
|
1002 |
+
<internalNodes>
|
1003 |
+
0 -1 172 -1.1810796568170190e-003</internalNodes>
|
1004 |
+
<leafValues>
|
1005 |
+
2.5173431634902954e-001 -4.5536977052688599e-001</leafValues></_>
|
1006 |
+
<_>
|
1007 |
+
<internalNodes>
|
1008 |
+
0 -1 88 8.0361258005723357e-004</internalNodes>
|
1009 |
+
<leafValues>
|
1010 |
+
-2.1178695559501648e-001 4.9318632483482361e-001</leafValues></_>
|
1011 |
+
<_>
|
1012 |
+
<internalNodes>
|
1013 |
+
0 -1 93 6.6201295703649521e-004</internalNodes>
|
1014 |
+
<leafValues>
|
1015 |
+
-1.9441033899784088e-001 4.6225026249885559e-001</leafValues></_>
|
1016 |
+
<_>
|
1017 |
+
<internalNodes>
|
1018 |
+
0 -1 84 3.4565184614621103e-004</internalNodes>
|
1019 |
+
<leafValues>
|
1020 |
+
-2.1175089478492737e-001 4.6985754370689392e-001</leafValues></_>
|
1021 |
+
<_>
|
1022 |
+
<internalNodes>
|
1023 |
+
0 -1 132 -5.6433549616485834e-004</internalNodes>
|
1024 |
+
<leafValues>
|
1025 |
+
-7.9713624715805054e-001 1.8714086711406708e-001</leafValues></_>
|
1026 |
+
<_>
|
1027 |
+
<internalNodes>
|
1028 |
+
0 -1 56 5.8492692187428474e-004</internalNodes>
|
1029 |
+
<leafValues>
|
1030 |
+
-3.9330720901489258e-001 2.4242231249809265e-001</leafValues></_>
|
1031 |
+
<_>
|
1032 |
+
<internalNodes>
|
1033 |
+
0 -1 13 2.5043603032827377e-002</internalNodes>
|
1034 |
+
<leafValues>
|
1035 |
+
1.3490234315395355e-001 -7.5923883914947510e-001</leafValues></_>
|
1036 |
+
<_>
|
1037 |
+
<internalNodes>
|
1038 |
+
0 -1 37 -1.8510785885155201e-003</internalNodes>
|
1039 |
+
<leafValues>
|
1040 |
+
4.1279399394989014e-001 -2.7271771430969238e-001</leafValues></_>
|
1041 |
+
<_>
|
1042 |
+
<internalNodes>
|
1043 |
+
0 -1 68 -2.5741360150277615e-004</internalNodes>
|
1044 |
+
<leafValues>
|
1045 |
+
-6.3662034273147583e-001 1.8135882914066315e-001</leafValues></_>
|
1046 |
+
<_>
|
1047 |
+
<internalNodes>
|
1048 |
+
0 -1 184 -1.5121832489967346e-002</internalNodes>
|
1049 |
+
<leafValues>
|
1050 |
+
2.5249326229095459e-001 -3.8438034057617188e-001</leafValues></_>
|
1051 |
+
<_>
|
1052 |
+
<internalNodes>
|
1053 |
+
0 -1 203 -1.5006031841039658e-002</internalNodes>
|
1054 |
+
<leafValues>
|
1055 |
+
-8.4878319501876831e-001 1.1718367785215378e-001</leafValues></_>
|
1056 |
+
<_>
|
1057 |
+
<internalNodes>
|
1058 |
+
0 -1 74 4.9880752339959145e-004</internalNodes>
|
1059 |
+
<leafValues>
|
1060 |
+
-2.6755046844482422e-001 4.5769825577735901e-001</leafValues></_></weakClassifiers></_>
|
1061 |
+
<!-- stage 18 -->
|
1062 |
+
<_>
|
1063 |
+
<maxWeakCount>12</maxWeakCount>
|
1064 |
+
<stageThreshold>-1.2097512483596802e+000</stageThreshold>
|
1065 |
+
<weakClassifiers>
|
1066 |
+
<_>
|
1067 |
+
<internalNodes>
|
1068 |
+
0 -1 195 -1.1614991351962090e-002</internalNodes>
|
1069 |
+
<leafValues>
|
1070 |
+
1.4465409517288208e-001 -5.9521216154098511e-001</leafValues></_>
|
1071 |
+
<_>
|
1072 |
+
<internalNodes>
|
1073 |
+
0 -1 75 3.9767110138200223e-004</internalNodes>
|
1074 |
+
<leafValues>
|
1075 |
+
-4.2697989940643311e-001 2.4382311105728149e-001</leafValues></_>
|
1076 |
+
<_>
|
1077 |
+
<internalNodes>
|
1078 |
+
0 -1 47 -4.6969857066869736e-002</internalNodes>
|
1079 |
+
<leafValues>
|
1080 |
+
-9.3969690799713135e-001 1.2196484953165054e-001</leafValues></_>
|
1081 |
+
<_>
|
1082 |
+
<internalNodes>
|
1083 |
+
0 -1 136 5.5550434626638889e-004</internalNodes>
|
1084 |
+
<leafValues>
|
1085 |
+
-1.8246935307979584e-001 6.5156191587448120e-001</leafValues></_>
|
1086 |
+
<_>
|
1087 |
+
<internalNodes>
|
1088 |
+
0 -1 99 2.9468833236023784e-004</internalNodes>
|
1089 |
+
<leafValues>
|
1090 |
+
1.5099152922630310e-001 -7.8840750455856323e-001</leafValues></_>
|
1091 |
+
<_>
|
1092 |
+
<internalNodes>
|
1093 |
+
0 -1 44 1.2439775280654430e-002</internalNodes>
|
1094 |
+
<leafValues>
|
1095 |
+
1.4981375634670258e-001 -7.5917595624923706e-001</leafValues></_>
|
1096 |
+
<_>
|
1097 |
+
<internalNodes>
|
1098 |
+
0 -1 147 6.6337559837847948e-004</internalNodes>
|
1099 |
+
<leafValues>
|
1100 |
+
-2.5185841321945190e-001 5.9387433528900146e-001</leafValues></_>
|
1101 |
+
<_>
|
1102 |
+
<internalNodes>
|
1103 |
+
0 -1 148 -6.8454549182206392e-004</internalNodes>
|
1104 |
+
<leafValues>
|
1105 |
+
5.1199448108673096e-001 -2.5247576832771301e-001</leafValues></_>
|
1106 |
+
<_>
|
1107 |
+
<internalNodes>
|
1108 |
+
0 -1 141 1.4808592386543751e-003</internalNodes>
|
1109 |
+
<leafValues>
|
1110 |
+
2.2439701855182648e-001 -5.8184891939163208e-001</leafValues></_>
|
1111 |
+
<_>
|
1112 |
+
<internalNodes>
|
1113 |
+
0 -1 12 6.0307271778583527e-003</internalNodes>
|
1114 |
+
<leafValues>
|
1115 |
+
-4.3553912639617920e-001 2.8183382749557495e-001</leafValues></_>
|
1116 |
+
<_>
|
1117 |
+
<internalNodes>
|
1118 |
+
0 -1 78 -1.9170897081494331e-002</internalNodes>
|
1119 |
+
<leafValues>
|
1120 |
+
-8.5707378387451172e-001 1.4850790798664093e-001</leafValues></_>
|
1121 |
+
<_>
|
1122 |
+
<internalNodes>
|
1123 |
+
0 -1 122 3.0278289341367781e-004</internalNodes>
|
1124 |
+
<leafValues>
|
1125 |
+
-3.1547480821609497e-001 4.1798374056816101e-001</leafValues></_></weakClassifiers></_>
|
1126 |
+
<!-- stage 19 -->
|
1127 |
+
<_>
|
1128 |
+
<maxWeakCount>10</maxWeakCount>
|
1129 |
+
<stageThreshold>-1.2253109216690063e+000</stageThreshold>
|
1130 |
+
<weakClassifiers>
|
1131 |
+
<_>
|
1132 |
+
<internalNodes>
|
1133 |
+
0 -1 181 4.6847470104694366e-002</internalNodes>
|
1134 |
+
<leafValues>
|
1135 |
+
-4.9239391088485718e-001 5.2287584543228149e-001</leafValues></_>
|
1136 |
+
<_>
|
1137 |
+
<internalNodes>
|
1138 |
+
0 -1 118 2.2181579843163490e-003</internalNodes>
|
1139 |
+
<leafValues>
|
1140 |
+
-4.2569425702095032e-001 3.6892616748809814e-001</leafValues></_>
|
1141 |
+
<_>
|
1142 |
+
<internalNodes>
|
1143 |
+
0 -1 145 6.1082182219251990e-004</internalNodes>
|
1144 |
+
<leafValues>
|
1145 |
+
1.7654621601104736e-001 -8.2656937837600708e-001</leafValues></_>
|
1146 |
+
<_>
|
1147 |
+
<internalNodes>
|
1148 |
+
0 -1 127 1.7401995137333870e-002</internalNodes>
|
1149 |
+
<leafValues>
|
1150 |
+
2.7770876884460449e-001 -5.6393522024154663e-001</leafValues></_>
|
1151 |
+
<_>
|
1152 |
+
<internalNodes>
|
1153 |
+
0 -1 54 5.2314018830657005e-004</internalNodes>
|
1154 |
+
<leafValues>
|
1155 |
+
-3.6257097125053406e-001 4.6126455068588257e-001</leafValues></_>
|
1156 |
+
<_>
|
1157 |
+
<internalNodes>
|
1158 |
+
0 -1 206 2.1581796463578939e-003</internalNodes>
|
1159 |
+
<leafValues>
|
1160 |
+
1.9110183417797089e-001 -6.8012320995330811e-001</leafValues></_>
|
1161 |
+
<_>
|
1162 |
+
<internalNodes>
|
1163 |
+
0 -1 192 -1.3209994649514556e-003</internalNodes>
|
1164 |
+
<leafValues>
|
1165 |
+
6.7618584632873535e-001 -2.6087108254432678e-001</leafValues></_>
|
1166 |
+
<_>
|
1167 |
+
<internalNodes>
|
1168 |
+
0 -1 126 -1.2237254530191422e-002</internalNodes>
|
1169 |
+
<leafValues>
|
1170 |
+
-5.7184767723083496e-001 3.0778104066848755e-001</leafValues></_>
|
1171 |
+
<_>
|
1172 |
+
<internalNodes>
|
1173 |
+
0 -1 36 8.7829465046525002e-003</internalNodes>
|
1174 |
+
<leafValues>
|
1175 |
+
1.6890920698642731e-001 -7.8835797309875488e-001</leafValues></_>
|
1176 |
+
<_>
|
1177 |
+
<internalNodes>
|
1178 |
+
0 -1 183 7.5588272884488106e-003</internalNodes>
|
1179 |
+
<leafValues>
|
1180 |
+
1.5143942832946777e-001 -8.2572847604751587e-001</leafValues></_></weakClassifiers></_></stages>
|
1181 |
+
<features>
|
1182 |
+
<_>
|
1183 |
+
<rects>
|
1184 |
+
<_>
|
1185 |
+
0 0 10 10 -1.</_>
|
1186 |
+
<_>
|
1187 |
+
0 0 5 5 2.</_>
|
1188 |
+
<_>
|
1189 |
+
5 5 5 5 2.</_></rects>
|
1190 |
+
<tilted>0</tilted></_>
|
1191 |
+
<_>
|
1192 |
+
<rects>
|
1193 |
+
<_>
|
1194 |
+
0 0 12 16 -1.</_>
|
1195 |
+
<_>
|
1196 |
+
6 0 6 16 2.</_></rects>
|
1197 |
+
<tilted>0</tilted></_>
|
1198 |
+
<_>
|
1199 |
+
<rects>
|
1200 |
+
<_>
|
1201 |
+
0 3 10 6 -1.</_>
|
1202 |
+
<_>
|
1203 |
+
5 3 5 6 2.</_></rects>
|
1204 |
+
<tilted>0</tilted></_>
|
1205 |
+
<_>
|
1206 |
+
<rects>
|
1207 |
+
<_>
|
1208 |
+
0 3 21 16 -1.</_>
|
1209 |
+
<_>
|
1210 |
+
7 3 7 16 3.</_></rects>
|
1211 |
+
<tilted>0</tilted></_>
|
1212 |
+
<_>
|
1213 |
+
<rects>
|
1214 |
+
<_>
|
1215 |
+
0 4 16 9 -1.</_>
|
1216 |
+
<_>
|
1217 |
+
4 4 8 9 2.</_></rects>
|
1218 |
+
<tilted>0</tilted></_>
|
1219 |
+
<_>
|
1220 |
+
<rects>
|
1221 |
+
<_>
|
1222 |
+
0 4 10 12 -1.</_>
|
1223 |
+
<_>
|
1224 |
+
5 4 5 12 2.</_></rects>
|
1225 |
+
<tilted>0</tilted></_>
|
1226 |
+
<_>
|
1227 |
+
<rects>
|
1228 |
+
<_>
|
1229 |
+
0 7 14 7 -1.</_>
|
1230 |
+
<_>
|
1231 |
+
7 7 7 7 2.</_></rects>
|
1232 |
+
<tilted>0</tilted></_>
|
1233 |
+
<_>
|
1234 |
+
<rects>
|
1235 |
+
<_>
|
1236 |
+
0 9 12 7 -1.</_>
|
1237 |
+
<_>
|
1238 |
+
6 9 6 7 2.</_></rects>
|
1239 |
+
<tilted>0</tilted></_>
|
1240 |
+
<_>
|
1241 |
+
<rects>
|
1242 |
+
<_>
|
1243 |
+
0 9 60 3 -1.</_>
|
1244 |
+
<_>
|
1245 |
+
30 9 30 3 2.</_></rects>
|
1246 |
+
<tilted>0</tilted></_>
|
1247 |
+
<_>
|
1248 |
+
<rects>
|
1249 |
+
<_>
|
1250 |
+
0 10 8 3 -1.</_>
|
1251 |
+
<_>
|
1252 |
+
4 10 4 3 2.</_></rects>
|
1253 |
+
<tilted>0</tilted></_>
|
1254 |
+
<_>
|
1255 |
+
<rects>
|
1256 |
+
<_>
|
1257 |
+
0 11 1 2 -1.</_>
|
1258 |
+
<_>
|
1259 |
+
0 12 1 1 2.</_></rects>
|
1260 |
+
<tilted>0</tilted></_>
|
1261 |
+
<_>
|
1262 |
+
<rects>
|
1263 |
+
<_>
|
1264 |
+
1 0 51 12 -1.</_>
|
1265 |
+
<_>
|
1266 |
+
1 4 51 4 3.</_></rects>
|
1267 |
+
<tilted>0</tilted></_>
|
1268 |
+
<_>
|
1269 |
+
<rects>
|
1270 |
+
<_>
|
1271 |
+
1 3 15 7 -1.</_>
|
1272 |
+
<_>
|
1273 |
+
6 3 5 7 3.</_></rects>
|
1274 |
+
<tilted>0</tilted></_>
|
1275 |
+
<_>
|
1276 |
+
<rects>
|
1277 |
+
<_>
|
1278 |
+
1 7 30 6 -1.</_>
|
1279 |
+
<_>
|
1280 |
+
1 7 15 3 2.</_>
|
1281 |
+
<_>
|
1282 |
+
16 10 15 3 2.</_></rects>
|
1283 |
+
<tilted>0</tilted></_>
|
1284 |
+
<_>
|
1285 |
+
<rects>
|
1286 |
+
<_>
|
1287 |
+
1 12 1 2 -1.</_>
|
1288 |
+
<_>
|
1289 |
+
1 13 1 1 2.</_></rects>
|
1290 |
+
<tilted>0</tilted></_>
|
1291 |
+
<_>
|
1292 |
+
<rects>
|
1293 |
+
<_>
|
1294 |
+
2 2 18 16 -1.</_>
|
1295 |
+
<_>
|
1296 |
+
2 6 18 8 2.</_></rects>
|
1297 |
+
<tilted>0</tilted></_>
|
1298 |
+
<_>
|
1299 |
+
<rects>
|
1300 |
+
<_>
|
1301 |
+
2 3 29 4 -1.</_>
|
1302 |
+
<_>
|
1303 |
+
2 5 29 2 2.</_></rects>
|
1304 |
+
<tilted>0</tilted></_>
|
1305 |
+
<_>
|
1306 |
+
<rects>
|
1307 |
+
<_>
|
1308 |
+
2 9 1 2 -1.</_>
|
1309 |
+
<_>
|
1310 |
+
2 10 1 1 2.</_></rects>
|
1311 |
+
<tilted>0</tilted></_>
|
1312 |
+
<_>
|
1313 |
+
<rects>
|
1314 |
+
<_>
|
1315 |
+
2 14 40 6 -1.</_>
|
1316 |
+
<_>
|
1317 |
+
2 17 40 3 2.</_></rects>
|
1318 |
+
<tilted>0</tilted></_>
|
1319 |
+
<_>
|
1320 |
+
<rects>
|
1321 |
+
<_>
|
1322 |
+
3 0 22 6 -1.</_>
|
1323 |
+
<_>
|
1324 |
+
3 2 22 2 3.</_></rects>
|
1325 |
+
<tilted>0</tilted></_>
|
1326 |
+
<_>
|
1327 |
+
<rects>
|
1328 |
+
<_>
|
1329 |
+
3 2 38 2 -1.</_>
|
1330 |
+
<_>
|
1331 |
+
3 2 19 1 2.</_>
|
1332 |
+
<_>
|
1333 |
+
22 3 19 1 2.</_></rects>
|
1334 |
+
<tilted>0</tilted></_>
|
1335 |
+
<_>
|
1336 |
+
<rects>
|
1337 |
+
<_>
|
1338 |
+
3 4 51 16 -1.</_>
|
1339 |
+
<_>
|
1340 |
+
3 8 51 8 2.</_></rects>
|
1341 |
+
<tilted>0</tilted></_>
|
1342 |
+
<_>
|
1343 |
+
<rects>
|
1344 |
+
<_>
|
1345 |
+
3 7 3 8 -1.</_>
|
1346 |
+
<_>
|
1347 |
+
4 7 1 8 3.</_></rects>
|
1348 |
+
<tilted>0</tilted></_>
|
1349 |
+
<_>
|
1350 |
+
<rects>
|
1351 |
+
<_>
|
1352 |
+
3 9 1 3 -1.</_>
|
1353 |
+
<_>
|
1354 |
+
3 10 1 1 3.</_></rects>
|
1355 |
+
<tilted>0</tilted></_>
|
1356 |
+
<_>
|
1357 |
+
<rects>
|
1358 |
+
<_>
|
1359 |
+
4 8 3 5 -1.</_>
|
1360 |
+
<_>
|
1361 |
+
5 8 1 5 3.</_></rects>
|
1362 |
+
<tilted>0</tilted></_>
|
1363 |
+
<_>
|
1364 |
+
<rects>
|
1365 |
+
<_>
|
1366 |
+
4 8 4 9 -1.</_>
|
1367 |
+
<_>
|
1368 |
+
5 8 2 9 2.</_></rects>
|
1369 |
+
<tilted>0</tilted></_>
|
1370 |
+
<_>
|
1371 |
+
<rects>
|
1372 |
+
<_>
|
1373 |
+
4 11 36 9 -1.</_>
|
1374 |
+
<_>
|
1375 |
+
16 11 12 9 3.</_></rects>
|
1376 |
+
<tilted>0</tilted></_>
|
1377 |
+
<_>
|
1378 |
+
<rects>
|
1379 |
+
<_>
|
1380 |
+
4 14 49 6 -1.</_>
|
1381 |
+
<_>
|
1382 |
+
4 17 49 3 2.</_></rects>
|
1383 |
+
<tilted>0</tilted></_>
|
1384 |
+
<_>
|
1385 |
+
<rects>
|
1386 |
+
<_>
|
1387 |
+
5 0 17 6 -1.</_>
|
1388 |
+
<_>
|
1389 |
+
5 2 17 2 3.</_></rects>
|
1390 |
+
<tilted>0</tilted></_>
|
1391 |
+
<_>
|
1392 |
+
<rects>
|
1393 |
+
<_>
|
1394 |
+
5 1 3 1 -1.</_>
|
1395 |
+
<_>
|
1396 |
+
6 1 1 1 3.</_></rects>
|
1397 |
+
<tilted>0</tilted></_>
|
1398 |
+
<_>
|
1399 |
+
<rects>
|
1400 |
+
<_>
|
1401 |
+
5 1 8 2 -1.</_>
|
1402 |
+
<_>
|
1403 |
+
7 1 4 2 2.</_></rects>
|
1404 |
+
<tilted>0</tilted></_>
|
1405 |
+
<_>
|
1406 |
+
<rects>
|
1407 |
+
<_>
|
1408 |
+
5 2 36 9 -1.</_>
|
1409 |
+
<_>
|
1410 |
+
17 2 12 9 3.</_></rects>
|
1411 |
+
<tilted>0</tilted></_>
|
1412 |
+
<_>
|
1413 |
+
<rects>
|
1414 |
+
<_>
|
1415 |
+
5 3 33 17 -1.</_>
|
1416 |
+
<_>
|
1417 |
+
16 3 11 17 3.</_></rects>
|
1418 |
+
<tilted>0</tilted></_>
|
1419 |
+
<_>
|
1420 |
+
<rects>
|
1421 |
+
<_>
|
1422 |
+
6 0 30 19 -1.</_>
|
1423 |
+
<_>
|
1424 |
+
16 0 10 19 3.</_></rects>
|
1425 |
+
<tilted>0</tilted></_>
|
1426 |
+
<_>
|
1427 |
+
<rects>
|
1428 |
+
<_>
|
1429 |
+
6 3 29 4 -1.</_>
|
1430 |
+
<_>
|
1431 |
+
6 5 29 2 2.</_></rects>
|
1432 |
+
<tilted>0</tilted></_>
|
1433 |
+
<_>
|
1434 |
+
<rects>
|
1435 |
+
<_>
|
1436 |
+
6 4 16 16 -1.</_>
|
1437 |
+
<_>
|
1438 |
+
14 4 8 16 2.</_></rects>
|
1439 |
+
<tilted>0</tilted></_>
|
1440 |
+
<_>
|
1441 |
+
<rects>
|
1442 |
+
<_>
|
1443 |
+
6 9 54 1 -1.</_>
|
1444 |
+
<_>
|
1445 |
+
33 9 27 1 2.</_></rects>
|
1446 |
+
<tilted>0</tilted></_>
|
1447 |
+
<_>
|
1448 |
+
<rects>
|
1449 |
+
<_>
|
1450 |
+
7 0 4 18 -1.</_>
|
1451 |
+
<_>
|
1452 |
+
8 0 2 18 2.</_></rects>
|
1453 |
+
<tilted>0</tilted></_>
|
1454 |
+
<_>
|
1455 |
+
<rects>
|
1456 |
+
<_>
|
1457 |
+
7 3 12 15 -1.</_>
|
1458 |
+
<_>
|
1459 |
+
13 3 6 15 2.</_></rects>
|
1460 |
+
<tilted>0</tilted></_>
|
1461 |
+
<_>
|
1462 |
+
<rects>
|
1463 |
+
<_>
|
1464 |
+
7 4 20 5 -1.</_>
|
1465 |
+
<_>
|
1466 |
+
12 4 10 5 2.</_></rects>
|
1467 |
+
<tilted>0</tilted></_>
|
1468 |
+
<_>
|
1469 |
+
<rects>
|
1470 |
+
<_>
|
1471 |
+
7 4 6 3 -1.</_>
|
1472 |
+
<_>
|
1473 |
+
7 5 6 1 3.</_></rects>
|
1474 |
+
<tilted>0</tilted></_>
|
1475 |
+
<_>
|
1476 |
+
<rects>
|
1477 |
+
<_>
|
1478 |
+
7 4 36 6 -1.</_>
|
1479 |
+
<_>
|
1480 |
+
19 4 12 6 3.</_></rects>
|
1481 |
+
<tilted>0</tilted></_>
|
1482 |
+
<_>
|
1483 |
+
<rects>
|
1484 |
+
<_>
|
1485 |
+
7 5 28 4 -1.</_>
|
1486 |
+
<_>
|
1487 |
+
14 5 14 4 2.</_></rects>
|
1488 |
+
<tilted>0</tilted></_>
|
1489 |
+
<_>
|
1490 |
+
<rects>
|
1491 |
+
<_>
|
1492 |
+
7 7 4 11 -1.</_>
|
1493 |
+
<_>
|
1494 |
+
8 7 2 11 2.</_></rects>
|
1495 |
+
<tilted>0</tilted></_>
|
1496 |
+
<_>
|
1497 |
+
<rects>
|
1498 |
+
<_>
|
1499 |
+
7 9 12 7 -1.</_>
|
1500 |
+
<_>
|
1501 |
+
13 9 6 7 2.</_></rects>
|
1502 |
+
<tilted>0</tilted></_>
|
1503 |
+
<_>
|
1504 |
+
<rects>
|
1505 |
+
<_>
|
1506 |
+
8 1 21 4 -1.</_>
|
1507 |
+
<_>
|
1508 |
+
8 3 21 2 2.</_></rects>
|
1509 |
+
<tilted>0</tilted></_>
|
1510 |
+
<_>
|
1511 |
+
<rects>
|
1512 |
+
<_>
|
1513 |
+
8 4 28 6 -1.</_>
|
1514 |
+
<_>
|
1515 |
+
15 4 14 6 2.</_></rects>
|
1516 |
+
<tilted>0</tilted></_>
|
1517 |
+
<_>
|
1518 |
+
<rects>
|
1519 |
+
<_>
|
1520 |
+
8 8 38 6 -1.</_>
|
1521 |
+
<_>
|
1522 |
+
8 10 38 2 3.</_></rects>
|
1523 |
+
<tilted>0</tilted></_>
|
1524 |
+
<_>
|
1525 |
+
<rects>
|
1526 |
+
<_>
|
1527 |
+
8 14 25 4 -1.</_>
|
1528 |
+
<_>
|
1529 |
+
8 15 25 2 2.</_></rects>
|
1530 |
+
<tilted>0</tilted></_>
|
1531 |
+
<_>
|
1532 |
+
<rects>
|
1533 |
+
<_>
|
1534 |
+
9 2 12 4 -1.</_>
|
1535 |
+
<_>
|
1536 |
+
12 2 6 4 2.</_></rects>
|
1537 |
+
<tilted>0</tilted></_>
|
1538 |
+
<_>
|
1539 |
+
<rects>
|
1540 |
+
<_>
|
1541 |
+
9 5 24 3 -1.</_>
|
1542 |
+
<_>
|
1543 |
+
15 5 12 3 2.</_></rects>
|
1544 |
+
<tilted>0</tilted></_>
|
1545 |
+
<_>
|
1546 |
+
<rects>
|
1547 |
+
<_>
|
1548 |
+
9 8 40 12 -1.</_>
|
1549 |
+
<_>
|
1550 |
+
9 12 40 4 3.</_></rects>
|
1551 |
+
<tilted>0</tilted></_>
|
1552 |
+
<_>
|
1553 |
+
<rects>
|
1554 |
+
<_>
|
1555 |
+
10 2 8 2 -1.</_>
|
1556 |
+
<_>
|
1557 |
+
12 2 4 2 2.</_></rects>
|
1558 |
+
<tilted>0</tilted></_>
|
1559 |
+
<_>
|
1560 |
+
<rects>
|
1561 |
+
<_>
|
1562 |
+
10 2 9 2 -1.</_>
|
1563 |
+
<_>
|
1564 |
+
13 2 3 2 3.</_></rects>
|
1565 |
+
<tilted>0</tilted></_>
|
1566 |
+
<_>
|
1567 |
+
<rects>
|
1568 |
+
<_>
|
1569 |
+
10 5 3 3 -1.</_>
|
1570 |
+
<_>
|
1571 |
+
11 6 1 1 9.</_></rects>
|
1572 |
+
<tilted>0</tilted></_>
|
1573 |
+
<_>
|
1574 |
+
<rects>
|
1575 |
+
<_>
|
1576 |
+
11 0 32 20 -1.</_>
|
1577 |
+
<_>
|
1578 |
+
19 0 16 20 2.</_></rects>
|
1579 |
+
<tilted>0</tilted></_>
|
1580 |
+
<_>
|
1581 |
+
<rects>
|
1582 |
+
<_>
|
1583 |
+
11 3 1 4 -1.</_>
|
1584 |
+
<_>
|
1585 |
+
11 5 1 2 2.</_></rects>
|
1586 |
+
<tilted>0</tilted></_>
|
1587 |
+
<_>
|
1588 |
+
<rects>
|
1589 |
+
<_>
|
1590 |
+
11 9 4 3 -1.</_>
|
1591 |
+
<_>
|
1592 |
+
12 9 2 3 2.</_></rects>
|
1593 |
+
<tilted>0</tilted></_>
|
1594 |
+
<_>
|
1595 |
+
<rects>
|
1596 |
+
<_>
|
1597 |
+
11 9 3 7 -1.</_>
|
1598 |
+
<_>
|
1599 |
+
12 9 1 7 3.</_></rects>
|
1600 |
+
<tilted>0</tilted></_>
|
1601 |
+
<_>
|
1602 |
+
<rects>
|
1603 |
+
<_>
|
1604 |
+
12 3 9 2 -1.</_>
|
1605 |
+
<_>
|
1606 |
+
15 3 3 2 3.</_></rects>
|
1607 |
+
<tilted>0</tilted></_>
|
1608 |
+
<_>
|
1609 |
+
<rects>
|
1610 |
+
<_>
|
1611 |
+
12 6 6 6 -1.</_>
|
1612 |
+
<_>
|
1613 |
+
14 6 2 6 3.</_></rects>
|
1614 |
+
<tilted>0</tilted></_>
|
1615 |
+
<_>
|
1616 |
+
<rects>
|
1617 |
+
<_>
|
1618 |
+
12 10 42 10 -1.</_>
|
1619 |
+
<_>
|
1620 |
+
26 10 14 10 3.</_></rects>
|
1621 |
+
<tilted>0</tilted></_>
|
1622 |
+
<_>
|
1623 |
+
<rects>
|
1624 |
+
<_>
|
1625 |
+
12 14 11 3 -1.</_>
|
1626 |
+
<_>
|
1627 |
+
12 15 11 1 3.</_></rects>
|
1628 |
+
<tilted>0</tilted></_>
|
1629 |
+
<_>
|
1630 |
+
<rects>
|
1631 |
+
<_>
|
1632 |
+
13 4 6 14 -1.</_>
|
1633 |
+
<_>
|
1634 |
+
15 4 2 14 3.</_></rects>
|
1635 |
+
<tilted>0</tilted></_>
|
1636 |
+
<_>
|
1637 |
+
<rects>
|
1638 |
+
<_>
|
1639 |
+
13 8 3 6 -1.</_>
|
1640 |
+
<_>
|
1641 |
+
14 8 1 6 3.</_></rects>
|
1642 |
+
<tilted>0</tilted></_>
|
1643 |
+
<_>
|
1644 |
+
<rects>
|
1645 |
+
<_>
|
1646 |
+
13 11 32 2 -1.</_>
|
1647 |
+
<_>
|
1648 |
+
21 11 16 2 2.</_></rects>
|
1649 |
+
<tilted>0</tilted></_>
|
1650 |
+
<_>
|
1651 |
+
<rects>
|
1652 |
+
<_>
|
1653 |
+
13 13 25 6 -1.</_>
|
1654 |
+
<_>
|
1655 |
+
13 16 25 3 2.</_></rects>
|
1656 |
+
<tilted>0</tilted></_>
|
1657 |
+
<_>
|
1658 |
+
<rects>
|
1659 |
+
<_>
|
1660 |
+
13 16 21 3 -1.</_>
|
1661 |
+
<_>
|
1662 |
+
20 16 7 3 3.</_></rects>
|
1663 |
+
<tilted>0</tilted></_>
|
1664 |
+
<_>
|
1665 |
+
<rects>
|
1666 |
+
<_>
|
1667 |
+
14 2 3 2 -1.</_>
|
1668 |
+
<_>
|
1669 |
+
15 2 1 2 3.</_></rects>
|
1670 |
+
<tilted>0</tilted></_>
|
1671 |
+
<_>
|
1672 |
+
<rects>
|
1673 |
+
<_>
|
1674 |
+
14 2 24 8 -1.</_>
|
1675 |
+
<_>
|
1676 |
+
20 2 12 8 2.</_></rects>
|
1677 |
+
<tilted>0</tilted></_>
|
1678 |
+
<_>
|
1679 |
+
<rects>
|
1680 |
+
<_>
|
1681 |
+
14 13 36 6 -1.</_>
|
1682 |
+
<_>
|
1683 |
+
23 13 18 6 2.</_></rects>
|
1684 |
+
<tilted>0</tilted></_>
|
1685 |
+
<_>
|
1686 |
+
<rects>
|
1687 |
+
<_>
|
1688 |
+
14 14 8 3 -1.</_>
|
1689 |
+
<_>
|
1690 |
+
14 15 8 1 3.</_></rects>
|
1691 |
+
<tilted>0</tilted></_>
|
1692 |
+
<_>
|
1693 |
+
<rects>
|
1694 |
+
<_>
|
1695 |
+
14 14 45 6 -1.</_>
|
1696 |
+
<_>
|
1697 |
+
14 17 45 3 2.</_></rects>
|
1698 |
+
<tilted>0</tilted></_>
|
1699 |
+
<_>
|
1700 |
+
<rects>
|
1701 |
+
<_>
|
1702 |
+
14 18 9 2 -1.</_>
|
1703 |
+
<_>
|
1704 |
+
17 18 3 2 3.</_></rects>
|
1705 |
+
<tilted>0</tilted></_>
|
1706 |
+
<_>
|
1707 |
+
<rects>
|
1708 |
+
<_>
|
1709 |
+
15 9 4 1 -1.</_>
|
1710 |
+
<_>
|
1711 |
+
16 9 2 1 2.</_></rects>
|
1712 |
+
<tilted>0</tilted></_>
|
1713 |
+
<_>
|
1714 |
+
<rects>
|
1715 |
+
<_>
|
1716 |
+
15 10 19 4 -1.</_>
|
1717 |
+
<_>
|
1718 |
+
15 12 19 2 2.</_></rects>
|
1719 |
+
<tilted>0</tilted></_>
|
1720 |
+
<_>
|
1721 |
+
<rects>
|
1722 |
+
<_>
|
1723 |
+
16 0 28 8 -1.</_>
|
1724 |
+
<_>
|
1725 |
+
16 2 28 4 2.</_></rects>
|
1726 |
+
<tilted>0</tilted></_>
|
1727 |
+
<_>
|
1728 |
+
<rects>
|
1729 |
+
<_>
|
1730 |
+
16 2 36 18 -1.</_>
|
1731 |
+
<_>
|
1732 |
+
28 2 12 18 3.</_></rects>
|
1733 |
+
<tilted>0</tilted></_>
|
1734 |
+
<_>
|
1735 |
+
<rects>
|
1736 |
+
<_>
|
1737 |
+
16 6 24 6 -1.</_>
|
1738 |
+
<_>
|
1739 |
+
22 6 12 6 2.</_></rects>
|
1740 |
+
<tilted>0</tilted></_>
|
1741 |
+
<_>
|
1742 |
+
<rects>
|
1743 |
+
<_>
|
1744 |
+
17 1 24 6 -1.</_>
|
1745 |
+
<_>
|
1746 |
+
17 3 24 2 3.</_></rects>
|
1747 |
+
<tilted>0</tilted></_>
|
1748 |
+
<_>
|
1749 |
+
<rects>
|
1750 |
+
<_>
|
1751 |
+
17 3 15 12 -1.</_>
|
1752 |
+
<_>
|
1753 |
+
22 7 5 4 9.</_></rects>
|
1754 |
+
<tilted>0</tilted></_>
|
1755 |
+
<_>
|
1756 |
+
<rects>
|
1757 |
+
<_>
|
1758 |
+
17 15 11 3 -1.</_>
|
1759 |
+
<_>
|
1760 |
+
17 16 11 1 3.</_></rects>
|
1761 |
+
<tilted>0</tilted></_>
|
1762 |
+
<_>
|
1763 |
+
<rects>
|
1764 |
+
<_>
|
1765 |
+
18 5 6 10 -1.</_>
|
1766 |
+
<_>
|
1767 |
+
20 5 2 10 3.</_></rects>
|
1768 |
+
<tilted>0</tilted></_>
|
1769 |
+
<_>
|
1770 |
+
<rects>
|
1771 |
+
<_>
|
1772 |
+
18 6 18 3 -1.</_>
|
1773 |
+
<_>
|
1774 |
+
24 6 6 3 3.</_></rects>
|
1775 |
+
<tilted>0</tilted></_>
|
1776 |
+
<_>
|
1777 |
+
<rects>
|
1778 |
+
<_>
|
1779 |
+
18 11 3 1 -1.</_>
|
1780 |
+
<_>
|
1781 |
+
19 11 1 1 3.</_></rects>
|
1782 |
+
<tilted>0</tilted></_>
|
1783 |
+
<_>
|
1784 |
+
<rects>
|
1785 |
+
<_>
|
1786 |
+
19 6 32 2 -1.</_>
|
1787 |
+
<_>
|
1788 |
+
27 6 16 2 2.</_></rects>
|
1789 |
+
<tilted>0</tilted></_>
|
1790 |
+
<_>
|
1791 |
+
<rects>
|
1792 |
+
<_>
|
1793 |
+
19 8 3 1 -1.</_>
|
1794 |
+
<_>
|
1795 |
+
20 8 1 1 3.</_></rects>
|
1796 |
+
<tilted>0</tilted></_>
|
1797 |
+
<_>
|
1798 |
+
<rects>
|
1799 |
+
<_>
|
1800 |
+
19 9 14 11 -1.</_>
|
1801 |
+
<_>
|
1802 |
+
26 9 7 11 2.</_></rects>
|
1803 |
+
<tilted>0</tilted></_>
|
1804 |
+
<_>
|
1805 |
+
<rects>
|
1806 |
+
<_>
|
1807 |
+
19 10 3 3 -1.</_>
|
1808 |
+
<_>
|
1809 |
+
20 10 1 3 3.</_></rects>
|
1810 |
+
<tilted>0</tilted></_>
|
1811 |
+
<_>
|
1812 |
+
<rects>
|
1813 |
+
<_>
|
1814 |
+
19 13 7 3 -1.</_>
|
1815 |
+
<_>
|
1816 |
+
19 14 7 1 3.</_></rects>
|
1817 |
+
<tilted>0</tilted></_>
|
1818 |
+
<_>
|
1819 |
+
<rects>
|
1820 |
+
<_>
|
1821 |
+
19 14 13 3 -1.</_>
|
1822 |
+
<_>
|
1823 |
+
19 15 13 1 3.</_></rects>
|
1824 |
+
<tilted>0</tilted></_>
|
1825 |
+
<_>
|
1826 |
+
<rects>
|
1827 |
+
<_>
|
1828 |
+
20 0 15 20 -1.</_>
|
1829 |
+
<_>
|
1830 |
+
25 0 5 20 3.</_></rects>
|
1831 |
+
<tilted>0</tilted></_>
|
1832 |
+
<_>
|
1833 |
+
<rects>
|
1834 |
+
<_>
|
1835 |
+
20 9 3 1 -1.</_>
|
1836 |
+
<_>
|
1837 |
+
21 9 1 1 3.</_></rects>
|
1838 |
+
<tilted>0</tilted></_>
|
1839 |
+
<_>
|
1840 |
+
<rects>
|
1841 |
+
<_>
|
1842 |
+
20 10 3 2 -1.</_>
|
1843 |
+
<_>
|
1844 |
+
21 10 1 2 3.</_></rects>
|
1845 |
+
<tilted>0</tilted></_>
|
1846 |
+
<_>
|
1847 |
+
<rects>
|
1848 |
+
<_>
|
1849 |
+
21 1 21 6 -1.</_>
|
1850 |
+
<_>
|
1851 |
+
21 3 21 2 3.</_></rects>
|
1852 |
+
<tilted>0</tilted></_>
|
1853 |
+
<_>
|
1854 |
+
<rects>
|
1855 |
+
<_>
|
1856 |
+
21 8 4 3 -1.</_>
|
1857 |
+
<_>
|
1858 |
+
22 8 2 3 2.</_></rects>
|
1859 |
+
<tilted>0</tilted></_>
|
1860 |
+
<_>
|
1861 |
+
<rects>
|
1862 |
+
<_>
|
1863 |
+
21 9 3 4 -1.</_>
|
1864 |
+
<_>
|
1865 |
+
22 9 1 4 3.</_></rects>
|
1866 |
+
<tilted>0</tilted></_>
|
1867 |
+
<_>
|
1868 |
+
<rects>
|
1869 |
+
<_>
|
1870 |
+
21 10 4 2 -1.</_>
|
1871 |
+
<_>
|
1872 |
+
22 10 2 2 2.</_></rects>
|
1873 |
+
<tilted>0</tilted></_>
|
1874 |
+
<_>
|
1875 |
+
<rects>
|
1876 |
+
<_>
|
1877 |
+
21 11 24 2 -1.</_>
|
1878 |
+
<_>
|
1879 |
+
27 11 12 2 2.</_></rects>
|
1880 |
+
<tilted>0</tilted></_>
|
1881 |
+
<_>
|
1882 |
+
<rects>
|
1883 |
+
<_>
|
1884 |
+
21 18 4 1 -1.</_>
|
1885 |
+
<_>
|
1886 |
+
22 18 2 1 2.</_></rects>
|
1887 |
+
<tilted>0</tilted></_>
|
1888 |
+
<_>
|
1889 |
+
<rects>
|
1890 |
+
<_>
|
1891 |
+
22 3 4 1 -1.</_>
|
1892 |
+
<_>
|
1893 |
+
23 3 2 1 2.</_></rects>
|
1894 |
+
<tilted>0</tilted></_>
|
1895 |
+
<_>
|
1896 |
+
<rects>
|
1897 |
+
<_>
|
1898 |
+
22 6 2 6 -1.</_>
|
1899 |
+
<_>
|
1900 |
+
22 6 1 3 2.</_>
|
1901 |
+
<_>
|
1902 |
+
23 9 1 3 2.</_></rects>
|
1903 |
+
<tilted>0</tilted></_>
|
1904 |
+
<_>
|
1905 |
+
<rects>
|
1906 |
+
<_>
|
1907 |
+
22 7 3 3 -1.</_>
|
1908 |
+
<_>
|
1909 |
+
23 8 1 1 9.</_></rects>
|
1910 |
+
<tilted>0</tilted></_>
|
1911 |
+
<_>
|
1912 |
+
<rects>
|
1913 |
+
<_>
|
1914 |
+
22 8 3 5 -1.</_>
|
1915 |
+
<_>
|
1916 |
+
23 8 1 5 3.</_></rects>
|
1917 |
+
<tilted>0</tilted></_>
|
1918 |
+
<_>
|
1919 |
+
<rects>
|
1920 |
+
<_>
|
1921 |
+
22 9 3 2 -1.</_>
|
1922 |
+
<_>
|
1923 |
+
23 9 1 2 3.</_></rects>
|
1924 |
+
<tilted>0</tilted></_>
|
1925 |
+
<_>
|
1926 |
+
<rects>
|
1927 |
+
<_>
|
1928 |
+
23 8 3 3 -1.</_>
|
1929 |
+
<_>
|
1930 |
+
24 8 1 3 3.</_></rects>
|
1931 |
+
<tilted>0</tilted></_>
|
1932 |
+
<_>
|
1933 |
+
<rects>
|
1934 |
+
<_>
|
1935 |
+
23 10 3 2 -1.</_>
|
1936 |
+
<_>
|
1937 |
+
24 10 1 2 3.</_></rects>
|
1938 |
+
<tilted>0</tilted></_>
|
1939 |
+
<_>
|
1940 |
+
<rects>
|
1941 |
+
<_>
|
1942 |
+
24 3 20 17 -1.</_>
|
1943 |
+
<_>
|
1944 |
+
29 3 10 17 2.</_></rects>
|
1945 |
+
<tilted>0</tilted></_>
|
1946 |
+
<_>
|
1947 |
+
<rects>
|
1948 |
+
<_>
|
1949 |
+
24 4 14 6 -1.</_>
|
1950 |
+
<_>
|
1951 |
+
31 4 7 6 2.</_></rects>
|
1952 |
+
<tilted>0</tilted></_>
|
1953 |
+
<_>
|
1954 |
+
<rects>
|
1955 |
+
<_>
|
1956 |
+
24 18 9 2 -1.</_>
|
1957 |
+
<_>
|
1958 |
+
27 18 3 2 3.</_></rects>
|
1959 |
+
<tilted>0</tilted></_>
|
1960 |
+
<_>
|
1961 |
+
<rects>
|
1962 |
+
<_>
|
1963 |
+
25 5 8 4 -1.</_>
|
1964 |
+
<_>
|
1965 |
+
25 5 4 4 2.</_></rects>
|
1966 |
+
<tilted>1</tilted></_>
|
1967 |
+
<_>
|
1968 |
+
<rects>
|
1969 |
+
<_>
|
1970 |
+
25 6 22 14 -1.</_>
|
1971 |
+
<_>
|
1972 |
+
36 6 11 14 2.</_></rects>
|
1973 |
+
<tilted>0</tilted></_>
|
1974 |
+
<_>
|
1975 |
+
<rects>
|
1976 |
+
<_>
|
1977 |
+
25 12 28 8 -1.</_>
|
1978 |
+
<_>
|
1979 |
+
25 14 28 4 2.</_></rects>
|
1980 |
+
<tilted>0</tilted></_>
|
1981 |
+
<_>
|
1982 |
+
<rects>
|
1983 |
+
<_>
|
1984 |
+
25 14 9 3 -1.</_>
|
1985 |
+
<_>
|
1986 |
+
25 15 9 1 3.</_></rects>
|
1987 |
+
<tilted>0</tilted></_>
|
1988 |
+
<_>
|
1989 |
+
<rects>
|
1990 |
+
<_>
|
1991 |
+
26 2 27 18 -1.</_>
|
1992 |
+
<_>
|
1993 |
+
35 2 9 18 3.</_></rects>
|
1994 |
+
<tilted>0</tilted></_>
|
1995 |
+
<_>
|
1996 |
+
<rects>
|
1997 |
+
<_>
|
1998 |
+
26 3 22 3 -1.</_>
|
1999 |
+
<_>
|
2000 |
+
26 4 22 1 3.</_></rects>
|
2001 |
+
<tilted>0</tilted></_>
|
2002 |
+
<_>
|
2003 |
+
<rects>
|
2004 |
+
<_>
|
2005 |
+
26 4 8 4 -1.</_>
|
2006 |
+
<_>
|
2007 |
+
30 4 4 4 2.</_></rects>
|
2008 |
+
<tilted>0</tilted></_>
|
2009 |
+
<_>
|
2010 |
+
<rects>
|
2011 |
+
<_>
|
2012 |
+
26 4 20 6 -1.</_>
|
2013 |
+
<_>
|
2014 |
+
31 4 10 6 2.</_></rects>
|
2015 |
+
<tilted>0</tilted></_>
|
2016 |
+
<_>
|
2017 |
+
<rects>
|
2018 |
+
<_>
|
2019 |
+
26 7 1 12 -1.</_>
|
2020 |
+
<_>
|
2021 |
+
22 11 1 4 3.</_></rects>
|
2022 |
+
<tilted>1</tilted></_>
|
2023 |
+
<_>
|
2024 |
+
<rects>
|
2025 |
+
<_>
|
2026 |
+
26 9 3 3 -1.</_>
|
2027 |
+
<_>
|
2028 |
+
27 9 1 3 3.</_></rects>
|
2029 |
+
<tilted>0</tilted></_>
|
2030 |
+
<_>
|
2031 |
+
<rects>
|
2032 |
+
<_>
|
2033 |
+
26 13 9 3 -1.</_>
|
2034 |
+
<_>
|
2035 |
+
26 14 9 1 3.</_></rects>
|
2036 |
+
<tilted>0</tilted></_>
|
2037 |
+
<_>
|
2038 |
+
<rects>
|
2039 |
+
<_>
|
2040 |
+
27 3 15 6 -1.</_>
|
2041 |
+
<_>
|
2042 |
+
32 3 5 6 3.</_></rects>
|
2043 |
+
<tilted>0</tilted></_>
|
2044 |
+
<_>
|
2045 |
+
<rects>
|
2046 |
+
<_>
|
2047 |
+
27 9 3 1 -1.</_>
|
2048 |
+
<_>
|
2049 |
+
28 9 1 1 3.</_></rects>
|
2050 |
+
<tilted>0</tilted></_>
|
2051 |
+
<_>
|
2052 |
+
<rects>
|
2053 |
+
<_>
|
2054 |
+
27 9 3 2 -1.</_>
|
2055 |
+
<_>
|
2056 |
+
28 9 1 2 3.</_></rects>
|
2057 |
+
<tilted>0</tilted></_>
|
2058 |
+
<_>
|
2059 |
+
<rects>
|
2060 |
+
<_>
|
2061 |
+
27 10 3 3 -1.</_>
|
2062 |
+
<_>
|
2063 |
+
28 10 1 3 3.</_></rects>
|
2064 |
+
<tilted>0</tilted></_>
|
2065 |
+
<_>
|
2066 |
+
<rects>
|
2067 |
+
<_>
|
2068 |
+
27 11 3 2 -1.</_>
|
2069 |
+
<_>
|
2070 |
+
28 11 1 2 3.</_></rects>
|
2071 |
+
<tilted>0</tilted></_>
|
2072 |
+
<_>
|
2073 |
+
<rects>
|
2074 |
+
<_>
|
2075 |
+
28 2 10 4 -1.</_>
|
2076 |
+
<_>
|
2077 |
+
28 2 10 2 2.</_></rects>
|
2078 |
+
<tilted>1</tilted></_>
|
2079 |
+
<_>
|
2080 |
+
<rects>
|
2081 |
+
<_>
|
2082 |
+
28 8 32 6 -1.</_>
|
2083 |
+
<_>
|
2084 |
+
28 10 32 2 3.</_></rects>
|
2085 |
+
<tilted>0</tilted></_>
|
2086 |
+
<_>
|
2087 |
+
<rects>
|
2088 |
+
<_>
|
2089 |
+
28 10 3 1 -1.</_>
|
2090 |
+
<_>
|
2091 |
+
29 10 1 1 3.</_></rects>
|
2092 |
+
<tilted>0</tilted></_>
|
2093 |
+
<_>
|
2094 |
+
<rects>
|
2095 |
+
<_>
|
2096 |
+
28 11 3 1 -1.</_>
|
2097 |
+
<_>
|
2098 |
+
29 11 1 1 3.</_></rects>
|
2099 |
+
<tilted>0</tilted></_>
|
2100 |
+
<_>
|
2101 |
+
<rects>
|
2102 |
+
<_>
|
2103 |
+
28 15 5 4 -1.</_>
|
2104 |
+
<_>
|
2105 |
+
28 16 5 2 2.</_></rects>
|
2106 |
+
<tilted>0</tilted></_>
|
2107 |
+
<_>
|
2108 |
+
<rects>
|
2109 |
+
<_>
|
2110 |
+
28 16 23 4 -1.</_>
|
2111 |
+
<_>
|
2112 |
+
28 17 23 2 2.</_></rects>
|
2113 |
+
<tilted>0</tilted></_>
|
2114 |
+
<_>
|
2115 |
+
<rects>
|
2116 |
+
<_>
|
2117 |
+
28 19 6 1 -1.</_>
|
2118 |
+
<_>
|
2119 |
+
30 19 2 1 3.</_></rects>
|
2120 |
+
<tilted>0</tilted></_>
|
2121 |
+
<_>
|
2122 |
+
<rects>
|
2123 |
+
<_>
|
2124 |
+
29 3 9 4 -1.</_>
|
2125 |
+
<_>
|
2126 |
+
32 3 3 4 3.</_></rects>
|
2127 |
+
<tilted>0</tilted></_>
|
2128 |
+
<_>
|
2129 |
+
<rects>
|
2130 |
+
<_>
|
2131 |
+
29 5 9 1 -1.</_>
|
2132 |
+
<_>
|
2133 |
+
32 5 3 1 3.</_></rects>
|
2134 |
+
<tilted>0</tilted></_>
|
2135 |
+
<_>
|
2136 |
+
<rects>
|
2137 |
+
<_>
|
2138 |
+
29 8 3 6 -1.</_>
|
2139 |
+
<_>
|
2140 |
+
30 8 1 6 3.</_></rects>
|
2141 |
+
<tilted>0</tilted></_>
|
2142 |
+
<_>
|
2143 |
+
<rects>
|
2144 |
+
<_>
|
2145 |
+
29 9 3 1 -1.</_>
|
2146 |
+
<_>
|
2147 |
+
30 9 1 1 3.</_></rects>
|
2148 |
+
<tilted>0</tilted></_>
|
2149 |
+
<_>
|
2150 |
+
<rects>
|
2151 |
+
<_>
|
2152 |
+
29 11 10 4 -1.</_>
|
2153 |
+
<_>
|
2154 |
+
29 13 10 2 2.</_></rects>
|
2155 |
+
<tilted>0</tilted></_>
|
2156 |
+
<_>
|
2157 |
+
<rects>
|
2158 |
+
<_>
|
2159 |
+
29 11 26 8 -1.</_>
|
2160 |
+
<_>
|
2161 |
+
29 13 26 4 2.</_></rects>
|
2162 |
+
<tilted>0</tilted></_>
|
2163 |
+
<_>
|
2164 |
+
<rects>
|
2165 |
+
<_>
|
2166 |
+
30 0 16 6 -1.</_>
|
2167 |
+
<_>
|
2168 |
+
30 3 16 3 2.</_></rects>
|
2169 |
+
<tilted>0</tilted></_>
|
2170 |
+
<_>
|
2171 |
+
<rects>
|
2172 |
+
<_>
|
2173 |
+
30 2 30 6 -1.</_>
|
2174 |
+
<_>
|
2175 |
+
30 2 15 3 2.</_>
|
2176 |
+
<_>
|
2177 |
+
45 5 15 3 2.</_></rects>
|
2178 |
+
<tilted>0</tilted></_>
|
2179 |
+
<_>
|
2180 |
+
<rects>
|
2181 |
+
<_>
|
2182 |
+
30 3 9 4 -1.</_>
|
2183 |
+
<_>
|
2184 |
+
33 3 3 4 3.</_></rects>
|
2185 |
+
<tilted>0</tilted></_>
|
2186 |
+
<_>
|
2187 |
+
<rects>
|
2188 |
+
<_>
|
2189 |
+
30 5 9 4 -1.</_>
|
2190 |
+
<_>
|
2191 |
+
30 6 9 2 2.</_></rects>
|
2192 |
+
<tilted>0</tilted></_>
|
2193 |
+
<_>
|
2194 |
+
<rects>
|
2195 |
+
<_>
|
2196 |
+
30 10 3 2 -1.</_>
|
2197 |
+
<_>
|
2198 |
+
31 10 1 2 3.</_></rects>
|
2199 |
+
<tilted>0</tilted></_>
|
2200 |
+
<_>
|
2201 |
+
<rects>
|
2202 |
+
<_>
|
2203 |
+
30 14 18 6 -1.</_>
|
2204 |
+
<_>
|
2205 |
+
36 14 6 6 3.</_></rects>
|
2206 |
+
<tilted>0</tilted></_>
|
2207 |
+
<_>
|
2208 |
+
<rects>
|
2209 |
+
<_>
|
2210 |
+
31 3 4 3 -1.</_>
|
2211 |
+
<_>
|
2212 |
+
32 3 2 3 2.</_></rects>
|
2213 |
+
<tilted>0</tilted></_>
|
2214 |
+
<_>
|
2215 |
+
<rects>
|
2216 |
+
<_>
|
2217 |
+
31 7 4 9 -1.</_>
|
2218 |
+
<_>
|
2219 |
+
32 7 2 9 2.</_></rects>
|
2220 |
+
<tilted>0</tilted></_>
|
2221 |
+
<_>
|
2222 |
+
<rects>
|
2223 |
+
<_>
|
2224 |
+
31 11 3 2 -1.</_>
|
2225 |
+
<_>
|
2226 |
+
32 11 1 2 3.</_></rects>
|
2227 |
+
<tilted>0</tilted></_>
|
2228 |
+
<_>
|
2229 |
+
<rects>
|
2230 |
+
<_>
|
2231 |
+
31 11 3 3 -1.</_>
|
2232 |
+
<_>
|
2233 |
+
32 11 1 3 3.</_></rects>
|
2234 |
+
<tilted>0</tilted></_>
|
2235 |
+
<_>
|
2236 |
+
<rects>
|
2237 |
+
<_>
|
2238 |
+
32 4 3 2 -1.</_>
|
2239 |
+
<_>
|
2240 |
+
33 4 1 2 3.</_></rects>
|
2241 |
+
<tilted>0</tilted></_>
|
2242 |
+
<_>
|
2243 |
+
<rects>
|
2244 |
+
<_>
|
2245 |
+
32 6 18 6 -1.</_>
|
2246 |
+
<_>
|
2247 |
+
32 6 9 3 2.</_>
|
2248 |
+
<_>
|
2249 |
+
41 9 9 3 2.</_></rects>
|
2250 |
+
<tilted>0</tilted></_>
|
2251 |
+
<_>
|
2252 |
+
<rects>
|
2253 |
+
<_>
|
2254 |
+
33 1 22 6 -1.</_>
|
2255 |
+
<_>
|
2256 |
+
33 4 22 3 2.</_></rects>
|
2257 |
+
<tilted>0</tilted></_>
|
2258 |
+
<_>
|
2259 |
+
<rects>
|
2260 |
+
<_>
|
2261 |
+
33 3 4 2 -1.</_>
|
2262 |
+
<_>
|
2263 |
+
34 3 2 2 2.</_></rects>
|
2264 |
+
<tilted>0</tilted></_>
|
2265 |
+
<_>
|
2266 |
+
<rects>
|
2267 |
+
<_>
|
2268 |
+
33 3 4 4 -1.</_>
|
2269 |
+
<_>
|
2270 |
+
34 3 2 4 2.</_></rects>
|
2271 |
+
<tilted>0</tilted></_>
|
2272 |
+
<_>
|
2273 |
+
<rects>
|
2274 |
+
<_>
|
2275 |
+
33 5 4 1 -1.</_>
|
2276 |
+
<_>
|
2277 |
+
34 5 2 1 2.</_></rects>
|
2278 |
+
<tilted>0</tilted></_>
|
2279 |
+
<_>
|
2280 |
+
<rects>
|
2281 |
+
<_>
|
2282 |
+
33 9 3 6 -1.</_>
|
2283 |
+
<_>
|
2284 |
+
34 9 1 6 3.</_></rects>
|
2285 |
+
<tilted>0</tilted></_>
|
2286 |
+
<_>
|
2287 |
+
<rects>
|
2288 |
+
<_>
|
2289 |
+
33 10 3 3 -1.</_>
|
2290 |
+
<_>
|
2291 |
+
34 10 1 3 3.</_></rects>
|
2292 |
+
<tilted>0</tilted></_>
|
2293 |
+
<_>
|
2294 |
+
<rects>
|
2295 |
+
<_>
|
2296 |
+
34 8 4 7 -1.</_>
|
2297 |
+
<_>
|
2298 |
+
35 8 2 7 2.</_></rects>
|
2299 |
+
<tilted>0</tilted></_>
|
2300 |
+
<_>
|
2301 |
+
<rects>
|
2302 |
+
<_>
|
2303 |
+
34 9 3 5 -1.</_>
|
2304 |
+
<_>
|
2305 |
+
35 9 1 5 3.</_></rects>
|
2306 |
+
<tilted>0</tilted></_>
|
2307 |
+
<_>
|
2308 |
+
<rects>
|
2309 |
+
<_>
|
2310 |
+
34 18 9 2 -1.</_>
|
2311 |
+
<_>
|
2312 |
+
37 18 3 2 3.</_></rects>
|
2313 |
+
<tilted>0</tilted></_>
|
2314 |
+
<_>
|
2315 |
+
<rects>
|
2316 |
+
<_>
|
2317 |
+
35 0 8 6 -1.</_>
|
2318 |
+
<_>
|
2319 |
+
37 0 4 6 2.</_></rects>
|
2320 |
+
<tilted>0</tilted></_>
|
2321 |
+
<_>
|
2322 |
+
<rects>
|
2323 |
+
<_>
|
2324 |
+
35 9 3 2 -1.</_>
|
2325 |
+
<_>
|
2326 |
+
36 9 1 2 3.</_></rects>
|
2327 |
+
<tilted>0</tilted></_>
|
2328 |
+
<_>
|
2329 |
+
<rects>
|
2330 |
+
<_>
|
2331 |
+
36 9 24 9 -1.</_>
|
2332 |
+
<_>
|
2333 |
+
42 9 12 9 2.</_></rects>
|
2334 |
+
<tilted>0</tilted></_>
|
2335 |
+
<_>
|
2336 |
+
<rects>
|
2337 |
+
<_>
|
2338 |
+
37 1 16 18 -1.</_>
|
2339 |
+
<_>
|
2340 |
+
41 1 8 18 2.</_></rects>
|
2341 |
+
<tilted>0</tilted></_>
|
2342 |
+
<_>
|
2343 |
+
<rects>
|
2344 |
+
<_>
|
2345 |
+
37 11 20 8 -1.</_>
|
2346 |
+
<_>
|
2347 |
+
42 11 10 8 2.</_></rects>
|
2348 |
+
<tilted>0</tilted></_>
|
2349 |
+
<_>
|
2350 |
+
<rects>
|
2351 |
+
<_>
|
2352 |
+
38 8 15 12 -1.</_>
|
2353 |
+
<_>
|
2354 |
+
38 12 15 4 3.</_></rects>
|
2355 |
+
<tilted>0</tilted></_>
|
2356 |
+
<_>
|
2357 |
+
<rects>
|
2358 |
+
<_>
|
2359 |
+
39 6 12 8 -1.</_>
|
2360 |
+
<_>
|
2361 |
+
45 6 6 8 2.</_></rects>
|
2362 |
+
<tilted>0</tilted></_>
|
2363 |
+
<_>
|
2364 |
+
<rects>
|
2365 |
+
<_>
|
2366 |
+
40 8 8 4 -1.</_>
|
2367 |
+
<_>
|
2368 |
+
40 8 8 2 2.</_></rects>
|
2369 |
+
<tilted>1</tilted></_>
|
2370 |
+
<_>
|
2371 |
+
<rects>
|
2372 |
+
<_>
|
2373 |
+
40 10 3 1 -1.</_>
|
2374 |
+
<_>
|
2375 |
+
41 10 1 1 3.</_></rects>
|
2376 |
+
<tilted>0</tilted></_>
|
2377 |
+
<_>
|
2378 |
+
<rects>
|
2379 |
+
<_>
|
2380 |
+
40 10 3 5 -1.</_>
|
2381 |
+
<_>
|
2382 |
+
41 10 1 5 3.</_></rects>
|
2383 |
+
<tilted>0</tilted></_>
|
2384 |
+
<_>
|
2385 |
+
<rects>
|
2386 |
+
<_>
|
2387 |
+
40 13 12 6 -1.</_>
|
2388 |
+
<_>
|
2389 |
+
43 13 6 6 2.</_></rects>
|
2390 |
+
<tilted>0</tilted></_>
|
2391 |
+
<_>
|
2392 |
+
<rects>
|
2393 |
+
<_>
|
2394 |
+
41 5 7 15 -1.</_>
|
2395 |
+
<_>
|
2396 |
+
41 10 7 5 3.</_></rects>
|
2397 |
+
<tilted>0</tilted></_>
|
2398 |
+
<_>
|
2399 |
+
<rects>
|
2400 |
+
<_>
|
2401 |
+
41 6 12 6 -1.</_>
|
2402 |
+
<_>
|
2403 |
+
45 6 4 6 3.</_></rects>
|
2404 |
+
<tilted>0</tilted></_>
|
2405 |
+
<_>
|
2406 |
+
<rects>
|
2407 |
+
<_>
|
2408 |
+
41 7 12 7 -1.</_>
|
2409 |
+
<_>
|
2410 |
+
45 7 4 7 3.</_></rects>
|
2411 |
+
<tilted>0</tilted></_>
|
2412 |
+
<_>
|
2413 |
+
<rects>
|
2414 |
+
<_>
|
2415 |
+
41 8 12 12 -1.</_>
|
2416 |
+
<_>
|
2417 |
+
45 8 4 12 3.</_></rects>
|
2418 |
+
<tilted>0</tilted></_>
|
2419 |
+
<_>
|
2420 |
+
<rects>
|
2421 |
+
<_>
|
2422 |
+
41 9 3 6 -1.</_>
|
2423 |
+
<_>
|
2424 |
+
42 9 1 6 3.</_></rects>
|
2425 |
+
<tilted>0</tilted></_>
|
2426 |
+
<_>
|
2427 |
+
<rects>
|
2428 |
+
<_>
|
2429 |
+
42 2 3 13 -1.</_>
|
2430 |
+
<_>
|
2431 |
+
43 2 1 13 3.</_></rects>
|
2432 |
+
<tilted>0</tilted></_>
|
2433 |
+
<_>
|
2434 |
+
<rects>
|
2435 |
+
<_>
|
2436 |
+
42 4 18 10 -1.</_>
|
2437 |
+
<_>
|
2438 |
+
42 4 9 5 2.</_>
|
2439 |
+
<_>
|
2440 |
+
51 9 9 5 2.</_></rects>
|
2441 |
+
<tilted>0</tilted></_>
|
2442 |
+
<_>
|
2443 |
+
<rects>
|
2444 |
+
<_>
|
2445 |
+
42 5 18 8 -1.</_>
|
2446 |
+
<_>
|
2447 |
+
42 5 9 4 2.</_>
|
2448 |
+
<_>
|
2449 |
+
51 9 9 4 2.</_></rects>
|
2450 |
+
<tilted>0</tilted></_>
|
2451 |
+
<_>
|
2452 |
+
<rects>
|
2453 |
+
<_>
|
2454 |
+
42 7 2 7 -1.</_>
|
2455 |
+
<_>
|
2456 |
+
43 7 1 7 2.</_></rects>
|
2457 |
+
<tilted>0</tilted></_>
|
2458 |
+
<_>
|
2459 |
+
<rects>
|
2460 |
+
<_>
|
2461 |
+
42 14 12 5 -1.</_>
|
2462 |
+
<_>
|
2463 |
+
46 14 4 5 3.</_></rects>
|
2464 |
+
<tilted>0</tilted></_>
|
2465 |
+
<_>
|
2466 |
+
<rects>
|
2467 |
+
<_>
|
2468 |
+
43 1 10 9 -1.</_>
|
2469 |
+
<_>
|
2470 |
+
40 4 10 3 3.</_></rects>
|
2471 |
+
<tilted>1</tilted></_>
|
2472 |
+
<_>
|
2473 |
+
<rects>
|
2474 |
+
<_>
|
2475 |
+
43 6 6 6 -1.</_>
|
2476 |
+
<_>
|
2477 |
+
43 9 6 3 2.</_></rects>
|
2478 |
+
<tilted>0</tilted></_>
|
2479 |
+
<_>
|
2480 |
+
<rects>
|
2481 |
+
<_>
|
2482 |
+
44 0 8 20 -1.</_>
|
2483 |
+
<_>
|
2484 |
+
46 0 4 20 2.</_></rects>
|
2485 |
+
<tilted>0</tilted></_>
|
2486 |
+
<_>
|
2487 |
+
<rects>
|
2488 |
+
<_>
|
2489 |
+
44 2 16 12 -1.</_>
|
2490 |
+
<_>
|
2491 |
+
44 2 8 6 2.</_>
|
2492 |
+
<_>
|
2493 |
+
52 8 8 6 2.</_></rects>
|
2494 |
+
<tilted>0</tilted></_>
|
2495 |
+
<_>
|
2496 |
+
<rects>
|
2497 |
+
<_>
|
2498 |
+
44 5 3 8 -1.</_>
|
2499 |
+
<_>
|
2500 |
+
45 5 1 8 3.</_></rects>
|
2501 |
+
<tilted>0</tilted></_>
|
2502 |
+
<_>
|
2503 |
+
<rects>
|
2504 |
+
<_>
|
2505 |
+
44 8 3 4 -1.</_>
|
2506 |
+
<_>
|
2507 |
+
45 8 1 4 3.</_></rects>
|
2508 |
+
<tilted>0</tilted></_>
|
2509 |
+
<_>
|
2510 |
+
<rects>
|
2511 |
+
<_>
|
2512 |
+
44 12 16 4 -1.</_>
|
2513 |
+
<_>
|
2514 |
+
52 12 8 4 2.</_></rects>
|
2515 |
+
<tilted>0</tilted></_>
|
2516 |
+
<_>
|
2517 |
+
<rects>
|
2518 |
+
<_>
|
2519 |
+
44 13 10 3 -1.</_>
|
2520 |
+
<_>
|
2521 |
+
49 13 5 3 2.</_></rects>
|
2522 |
+
<tilted>0</tilted></_>
|
2523 |
+
<_>
|
2524 |
+
<rects>
|
2525 |
+
<_>
|
2526 |
+
45 19 9 1 -1.</_>
|
2527 |
+
<_>
|
2528 |
+
48 19 3 1 3.</_></rects>
|
2529 |
+
<tilted>0</tilted></_>
|
2530 |
+
<_>
|
2531 |
+
<rects>
|
2532 |
+
<_>
|
2533 |
+
46 3 8 8 -1.</_>
|
2534 |
+
<_>
|
2535 |
+
50 3 4 8 2.</_></rects>
|
2536 |
+
<tilted>0</tilted></_>
|
2537 |
+
<_>
|
2538 |
+
<rects>
|
2539 |
+
<_>
|
2540 |
+
47 12 10 6 -1.</_>
|
2541 |
+
<_>
|
2542 |
+
52 12 5 6 2.</_></rects>
|
2543 |
+
<tilted>0</tilted></_>
|
2544 |
+
<_>
|
2545 |
+
<rects>
|
2546 |
+
<_>
|
2547 |
+
48 0 4 13 -1.</_>
|
2548 |
+
<_>
|
2549 |
+
49 0 2 13 2.</_></rects>
|
2550 |
+
<tilted>0</tilted></_>
|
2551 |
+
<_>
|
2552 |
+
<rects>
|
2553 |
+
<_>
|
2554 |
+
48 5 3 12 -1.</_>
|
2555 |
+
<_>
|
2556 |
+
45 8 3 6 2.</_></rects>
|
2557 |
+
<tilted>1</tilted></_>
|
2558 |
+
<_>
|
2559 |
+
<rects>
|
2560 |
+
<_>
|
2561 |
+
48 9 12 8 -1.</_>
|
2562 |
+
<_>
|
2563 |
+
54 9 6 8 2.</_></rects>
|
2564 |
+
<tilted>0</tilted></_>
|
2565 |
+
<_>
|
2566 |
+
<rects>
|
2567 |
+
<_>
|
2568 |
+
48 13 12 4 -1.</_>
|
2569 |
+
<_>
|
2570 |
+
54 13 6 4 2.</_></rects>
|
2571 |
+
<tilted>0</tilted></_>
|
2572 |
+
<_>
|
2573 |
+
<rects>
|
2574 |
+
<_>
|
2575 |
+
49 8 3 1 -1.</_>
|
2576 |
+
<_>
|
2577 |
+
50 8 1 1 3.</_></rects>
|
2578 |
+
<tilted>0</tilted></_>
|
2579 |
+
<_>
|
2580 |
+
<rects>
|
2581 |
+
<_>
|
2582 |
+
49 8 3 2 -1.</_>
|
2583 |
+
<_>
|
2584 |
+
50 8 1 2 3.</_></rects>
|
2585 |
+
<tilted>0</tilted></_>
|
2586 |
+
<_>
|
2587 |
+
<rects>
|
2588 |
+
<_>
|
2589 |
+
49 8 3 3 -1.</_>
|
2590 |
+
<_>
|
2591 |
+
50 8 1 3 3.</_></rects>
|
2592 |
+
<tilted>0</tilted></_>
|
2593 |
+
<_>
|
2594 |
+
<rects>
|
2595 |
+
<_>
|
2596 |
+
50 9 3 3 -1.</_>
|
2597 |
+
<_>
|
2598 |
+
51 10 1 1 9.</_></rects>
|
2599 |
+
<tilted>0</tilted></_>
|
2600 |
+
<_>
|
2601 |
+
<rects>
|
2602 |
+
<_>
|
2603 |
+
51 8 3 3 -1.</_>
|
2604 |
+
<_>
|
2605 |
+
52 8 1 3 3.</_></rects>
|
2606 |
+
<tilted>0</tilted></_>
|
2607 |
+
<_>
|
2608 |
+
<rects>
|
2609 |
+
<_>
|
2610 |
+
52 6 6 10 -1.</_>
|
2611 |
+
<_>
|
2612 |
+
54 6 2 10 3.</_></rects>
|
2613 |
+
<tilted>0</tilted></_>
|
2614 |
+
<_>
|
2615 |
+
<rects>
|
2616 |
+
<_>
|
2617 |
+
52 7 8 7 -1.</_>
|
2618 |
+
<_>
|
2619 |
+
56 7 4 7 2.</_></rects>
|
2620 |
+
<tilted>0</tilted></_>
|
2621 |
+
<_>
|
2622 |
+
<rects>
|
2623 |
+
<_>
|
2624 |
+
52 8 8 4 -1.</_>
|
2625 |
+
<_>
|
2626 |
+
52 8 8 2 2.</_></rects>
|
2627 |
+
<tilted>1</tilted></_>
|
2628 |
+
<_>
|
2629 |
+
<rects>
|
2630 |
+
<_>
|
2631 |
+
54 3 6 15 -1.</_>
|
2632 |
+
<_>
|
2633 |
+
57 3 3 15 2.</_></rects>
|
2634 |
+
<tilted>0</tilted></_>
|
2635 |
+
<_>
|
2636 |
+
<rects>
|
2637 |
+
<_>
|
2638 |
+
54 8 6 7 -1.</_>
|
2639 |
+
<_>
|
2640 |
+
57 8 3 7 2.</_></rects>
|
2641 |
+
<tilted>0</tilted></_>
|
2642 |
+
<_>
|
2643 |
+
<rects>
|
2644 |
+
<_>
|
2645 |
+
57 11 3 6 -1.</_>
|
2646 |
+
<_>
|
2647 |
+
57 13 3 2 3.</_></rects>
|
2648 |
+
<tilted>0</tilted></_>
|
2649 |
+
<_>
|
2650 |
+
<rects>
|
2651 |
+
<_>
|
2652 |
+
59 8 1 3 -1.</_>
|
2653 |
+
<_>
|
2654 |
+
59 9 1 1 3.</_></rects>
|
2655 |
+
<tilted>0</tilted></_></features></cascade>
|
2656 |
+
</opencv_storage>
|
cv2/data/haarcascade_smile.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cv2/data/haarcascade_upperbody.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cv2/detail/__init__.pyi
ADDED
@@ -0,0 +1,598 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import cv2.gapi
|
3 |
+
import cv2.gapi.ie
|
4 |
+
import cv2.gapi.onnx
|
5 |
+
import cv2.gapi.ov
|
6 |
+
import cv2.typing
|
7 |
+
import numpy
|
8 |
+
import typing
|
9 |
+
|
10 |
+
|
11 |
+
# Enumerations
|
12 |
+
TEST_CUSTOM: int
|
13 |
+
TEST_EQ: int
|
14 |
+
TEST_NE: int
|
15 |
+
TEST_LE: int
|
16 |
+
TEST_LT: int
|
17 |
+
TEST_GE: int
|
18 |
+
TEST_GT: int
|
19 |
+
TestOp = int
|
20 |
+
"""One of [TEST_CUSTOM, TEST_EQ, TEST_NE, TEST_LE, TEST_LT, TEST_GE, TEST_GT]"""
|
21 |
+
|
22 |
+
WAVE_CORRECT_HORIZ: int
|
23 |
+
WAVE_CORRECT_VERT: int
|
24 |
+
WAVE_CORRECT_AUTO: int
|
25 |
+
WaveCorrectKind = int
|
26 |
+
"""One of [WAVE_CORRECT_HORIZ, WAVE_CORRECT_VERT, WAVE_CORRECT_AUTO]"""
|
27 |
+
|
28 |
+
OpaqueKind_CV_UNKNOWN: int
|
29 |
+
OPAQUE_KIND_CV_UNKNOWN: int
|
30 |
+
OpaqueKind_CV_BOOL: int
|
31 |
+
OPAQUE_KIND_CV_BOOL: int
|
32 |
+
OpaqueKind_CV_INT: int
|
33 |
+
OPAQUE_KIND_CV_INT: int
|
34 |
+
OpaqueKind_CV_INT64: int
|
35 |
+
OPAQUE_KIND_CV_INT64: int
|
36 |
+
OpaqueKind_CV_DOUBLE: int
|
37 |
+
OPAQUE_KIND_CV_DOUBLE: int
|
38 |
+
OpaqueKind_CV_FLOAT: int
|
39 |
+
OPAQUE_KIND_CV_FLOAT: int
|
40 |
+
OpaqueKind_CV_UINT64: int
|
41 |
+
OPAQUE_KIND_CV_UINT64: int
|
42 |
+
OpaqueKind_CV_STRING: int
|
43 |
+
OPAQUE_KIND_CV_STRING: int
|
44 |
+
OpaqueKind_CV_POINT: int
|
45 |
+
OPAQUE_KIND_CV_POINT: int
|
46 |
+
OpaqueKind_CV_POINT2F: int
|
47 |
+
OPAQUE_KIND_CV_POINT2F: int
|
48 |
+
OpaqueKind_CV_POINT3F: int
|
49 |
+
OPAQUE_KIND_CV_POINT3F: int
|
50 |
+
OpaqueKind_CV_SIZE: int
|
51 |
+
OPAQUE_KIND_CV_SIZE: int
|
52 |
+
OpaqueKind_CV_RECT: int
|
53 |
+
OPAQUE_KIND_CV_RECT: int
|
54 |
+
OpaqueKind_CV_SCALAR: int
|
55 |
+
OPAQUE_KIND_CV_SCALAR: int
|
56 |
+
OpaqueKind_CV_MAT: int
|
57 |
+
OPAQUE_KIND_CV_MAT: int
|
58 |
+
OpaqueKind_CV_DRAW_PRIM: int
|
59 |
+
OPAQUE_KIND_CV_DRAW_PRIM: int
|
60 |
+
OpaqueKind = int
|
61 |
+
"""One of [OpaqueKind_CV_UNKNOWN, OPAQUE_KIND_CV_UNKNOWN, OpaqueKind_CV_BOOL, OPAQUE_KIND_CV_BOOL, OpaqueKind_CV_INT, OPAQUE_KIND_CV_INT, OpaqueKind_CV_INT64, OPAQUE_KIND_CV_INT64, OpaqueKind_CV_DOUBLE, OPAQUE_KIND_CV_DOUBLE, OpaqueKind_CV_FLOAT, OPAQUE_KIND_CV_FLOAT, OpaqueKind_CV_UINT64, OPAQUE_KIND_CV_UINT64, OpaqueKind_CV_STRING, OPAQUE_KIND_CV_STRING, OpaqueKind_CV_POINT, OPAQUE_KIND_CV_POINT, OpaqueKind_CV_POINT2F, OPAQUE_KIND_CV_POINT2F, OpaqueKind_CV_POINT3F, OPAQUE_KIND_CV_POINT3F, OpaqueKind_CV_SIZE, OPAQUE_KIND_CV_SIZE, OpaqueKind_CV_RECT, OPAQUE_KIND_CV_RECT, OpaqueKind_CV_SCALAR, OPAQUE_KIND_CV_SCALAR, OpaqueKind_CV_MAT, OPAQUE_KIND_CV_MAT, OpaqueKind_CV_DRAW_PRIM, OPAQUE_KIND_CV_DRAW_PRIM]"""
|
62 |
+
|
63 |
+
ArgKind_OPAQUE_VAL: int
|
64 |
+
ARG_KIND_OPAQUE_VAL: int
|
65 |
+
ArgKind_OPAQUE: int
|
66 |
+
ARG_KIND_OPAQUE: int
|
67 |
+
ArgKind_GOBJREF: int
|
68 |
+
ARG_KIND_GOBJREF: int
|
69 |
+
ArgKind_GMAT: int
|
70 |
+
ARG_KIND_GMAT: int
|
71 |
+
ArgKind_GMATP: int
|
72 |
+
ARG_KIND_GMATP: int
|
73 |
+
ArgKind_GFRAME: int
|
74 |
+
ARG_KIND_GFRAME: int
|
75 |
+
ArgKind_GSCALAR: int
|
76 |
+
ARG_KIND_GSCALAR: int
|
77 |
+
ArgKind_GARRAY: int
|
78 |
+
ARG_KIND_GARRAY: int
|
79 |
+
ArgKind_GOPAQUE: int
|
80 |
+
ARG_KIND_GOPAQUE: int
|
81 |
+
ArgKind = int
|
82 |
+
"""One of [ArgKind_OPAQUE_VAL, ARG_KIND_OPAQUE_VAL, ArgKind_OPAQUE, ARG_KIND_OPAQUE, ArgKind_GOBJREF, ARG_KIND_GOBJREF, ArgKind_GMAT, ARG_KIND_GMAT, ArgKind_GMATP, ARG_KIND_GMATP, ArgKind_GFRAME, ARG_KIND_GFRAME, ArgKind_GSCALAR, ARG_KIND_GSCALAR, ArgKind_GARRAY, ARG_KIND_GARRAY, ArgKind_GOPAQUE, ARG_KIND_GOPAQUE]"""
|
83 |
+
|
84 |
+
|
85 |
+
Blender_NO: int
|
86 |
+
BLENDER_NO: int
|
87 |
+
Blender_FEATHER: int
|
88 |
+
BLENDER_FEATHER: int
|
89 |
+
Blender_MULTI_BAND: int
|
90 |
+
BLENDER_MULTI_BAND: int
|
91 |
+
|
92 |
+
ExposureCompensator_NO: int
|
93 |
+
EXPOSURE_COMPENSATOR_NO: int
|
94 |
+
ExposureCompensator_GAIN: int
|
95 |
+
EXPOSURE_COMPENSATOR_GAIN: int
|
96 |
+
ExposureCompensator_GAIN_BLOCKS: int
|
97 |
+
EXPOSURE_COMPENSATOR_GAIN_BLOCKS: int
|
98 |
+
ExposureCompensator_CHANNELS: int
|
99 |
+
EXPOSURE_COMPENSATOR_CHANNELS: int
|
100 |
+
ExposureCompensator_CHANNELS_BLOCKS: int
|
101 |
+
EXPOSURE_COMPENSATOR_CHANNELS_BLOCKS: int
|
102 |
+
|
103 |
+
SeamFinder_NO: int
|
104 |
+
SEAM_FINDER_NO: int
|
105 |
+
SeamFinder_VORONOI_SEAM: int
|
106 |
+
SEAM_FINDER_VORONOI_SEAM: int
|
107 |
+
SeamFinder_DP_SEAM: int
|
108 |
+
SEAM_FINDER_DP_SEAM: int
|
109 |
+
|
110 |
+
DpSeamFinder_COLOR: int
|
111 |
+
DP_SEAM_FINDER_COLOR: int
|
112 |
+
DpSeamFinder_COLOR_GRAD: int
|
113 |
+
DP_SEAM_FINDER_COLOR_GRAD: int
|
114 |
+
DpSeamFinder_CostFunction = int
|
115 |
+
"""One of [DpSeamFinder_COLOR, DP_SEAM_FINDER_COLOR, DpSeamFinder_COLOR_GRAD, DP_SEAM_FINDER_COLOR_GRAD]"""
|
116 |
+
|
117 |
+
Timelapser_AS_IS: int
|
118 |
+
TIMELAPSER_AS_IS: int
|
119 |
+
Timelapser_CROP: int
|
120 |
+
TIMELAPSER_CROP: int
|
121 |
+
|
122 |
+
GraphCutSeamFinderBase_COST_COLOR: int
|
123 |
+
GRAPH_CUT_SEAM_FINDER_BASE_COST_COLOR: int
|
124 |
+
GraphCutSeamFinderBase_COST_COLOR_GRAD: int
|
125 |
+
GRAPH_CUT_SEAM_FINDER_BASE_COST_COLOR_GRAD: int
|
126 |
+
GraphCutSeamFinderBase_CostType = int
|
127 |
+
"""One of [GraphCutSeamFinderBase_COST_COLOR, GRAPH_CUT_SEAM_FINDER_BASE_COST_COLOR, GraphCutSeamFinderBase_COST_COLOR_GRAD, GRAPH_CUT_SEAM_FINDER_BASE_COST_COLOR_GRAD]"""
|
128 |
+
|
129 |
+
TrackerSamplerCSC_MODE_INIT_POS: int
|
130 |
+
TRACKER_SAMPLER_CSC_MODE_INIT_POS: int
|
131 |
+
TrackerSamplerCSC_MODE_INIT_NEG: int
|
132 |
+
TRACKER_SAMPLER_CSC_MODE_INIT_NEG: int
|
133 |
+
TrackerSamplerCSC_MODE_TRACK_POS: int
|
134 |
+
TRACKER_SAMPLER_CSC_MODE_TRACK_POS: int
|
135 |
+
TrackerSamplerCSC_MODE_TRACK_NEG: int
|
136 |
+
TRACKER_SAMPLER_CSC_MODE_TRACK_NEG: int
|
137 |
+
TrackerSamplerCSC_MODE_DETECT: int
|
138 |
+
TRACKER_SAMPLER_CSC_MODE_DETECT: int
|
139 |
+
TrackerSamplerCSC_MODE = int
|
140 |
+
"""One of [TrackerSamplerCSC_MODE_INIT_POS, TRACKER_SAMPLER_CSC_MODE_INIT_POS, TrackerSamplerCSC_MODE_INIT_NEG, TRACKER_SAMPLER_CSC_MODE_INIT_NEG, TrackerSamplerCSC_MODE_TRACK_POS, TRACKER_SAMPLER_CSC_MODE_TRACK_POS, TrackerSamplerCSC_MODE_TRACK_NEG, TRACKER_SAMPLER_CSC_MODE_TRACK_NEG, TrackerSamplerCSC_MODE_DETECT, TRACKER_SAMPLER_CSC_MODE_DETECT]"""
|
141 |
+
|
142 |
+
|
143 |
+
# Classes
|
144 |
+
class Blender:
|
145 |
+
# Functions
|
146 |
+
@classmethod
|
147 |
+
def createDefault(cls, type: int, try_gpu: bool = ...) -> Blender: ...
|
148 |
+
|
149 |
+
@typing.overload
|
150 |
+
def prepare(self, corners: typing.Sequence[cv2.typing.Point], sizes: typing.Sequence[cv2.typing.Size]) -> None: ...
|
151 |
+
@typing.overload
|
152 |
+
def prepare(self, dst_roi: cv2.typing.Rect) -> None: ...
|
153 |
+
|
154 |
+
@typing.overload
|
155 |
+
def feed(self, img: cv2.typing.MatLike, mask: cv2.typing.MatLike, tl: cv2.typing.Point) -> None: ...
|
156 |
+
@typing.overload
|
157 |
+
def feed(self, img: cv2.UMat, mask: cv2.UMat, tl: cv2.typing.Point) -> None: ...
|
158 |
+
|
159 |
+
@typing.overload
|
160 |
+
def blend(self, dst: cv2.typing.MatLike, dst_mask: cv2.typing.MatLike) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
161 |
+
@typing.overload
|
162 |
+
def blend(self, dst: cv2.UMat, dst_mask: cv2.UMat) -> tuple[cv2.UMat, cv2.UMat]: ...
|
163 |
+
|
164 |
+
|
165 |
+
class CameraParams:
|
166 |
+
focal: float
|
167 |
+
aspect: float
|
168 |
+
ppx: float
|
169 |
+
ppy: float
|
170 |
+
R: cv2.typing.MatLike
|
171 |
+
t: cv2.typing.MatLike
|
172 |
+
|
173 |
+
# Functions
|
174 |
+
def K(self) -> cv2.typing.MatLike: ...
|
175 |
+
|
176 |
+
|
177 |
+
class ExposureCompensator:
|
178 |
+
# Functions
|
179 |
+
@classmethod
|
180 |
+
def createDefault(cls, type: int) -> ExposureCompensator: ...
|
181 |
+
|
182 |
+
def feed(self, corners: typing.Sequence[cv2.typing.Point], images: typing.Sequence[cv2.UMat], masks: typing.Sequence[cv2.UMat]) -> None: ...
|
183 |
+
|
184 |
+
@typing.overload
|
185 |
+
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
|
186 |
+
@typing.overload
|
187 |
+
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ...
|
188 |
+
|
189 |
+
def getMatGains(self, arg1: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ...
|
190 |
+
|
191 |
+
def setMatGains(self, arg1: typing.Sequence[cv2.typing.MatLike]) -> None: ...
|
192 |
+
|
193 |
+
def setUpdateGain(self, b: bool) -> None: ...
|
194 |
+
|
195 |
+
def getUpdateGain(self) -> bool: ...
|
196 |
+
|
197 |
+
|
198 |
+
class ImageFeatures:
|
199 |
+
img_idx: int
|
200 |
+
img_size: cv2.typing.Size
|
201 |
+
keypoints: typing.Sequence[cv2.KeyPoint]
|
202 |
+
descriptors: cv2.UMat
|
203 |
+
|
204 |
+
# Functions
|
205 |
+
def getKeypoints(self) -> typing.Sequence[cv2.KeyPoint]: ...
|
206 |
+
|
207 |
+
|
208 |
+
class MatchesInfo:
|
209 |
+
src_img_idx: int
|
210 |
+
dst_img_idx: int
|
211 |
+
matches: typing.Sequence[cv2.DMatch]
|
212 |
+
inliers_mask: numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]]
|
213 |
+
num_inliers: int
|
214 |
+
H: cv2.typing.MatLike
|
215 |
+
confidence: float
|
216 |
+
|
217 |
+
# Functions
|
218 |
+
def getMatches(self) -> typing.Sequence[cv2.DMatch]: ...
|
219 |
+
|
220 |
+
def getInliers(self) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]]: ...
|
221 |
+
|
222 |
+
|
223 |
+
class FeaturesMatcher:
|
224 |
+
# Functions
|
225 |
+
def apply(self, features1: ImageFeatures, features2: ImageFeatures) -> MatchesInfo: ...
|
226 |
+
|
227 |
+
def apply2(self, features: typing.Sequence[ImageFeatures], mask: cv2.UMat | None = ...) -> typing.Sequence[MatchesInfo]: ...
|
228 |
+
|
229 |
+
def isThreadSafe(self) -> bool: ...
|
230 |
+
|
231 |
+
def collectGarbage(self) -> None: ...
|
232 |
+
|
233 |
+
|
234 |
+
class Estimator:
|
235 |
+
# Functions
|
236 |
+
def apply(self, features: typing.Sequence[ImageFeatures], pairwise_matches: typing.Sequence[MatchesInfo], cameras: typing.Sequence[CameraParams]) -> tuple[bool, typing.Sequence[CameraParams]]: ...
|
237 |
+
|
238 |
+
|
239 |
+
class SeamFinder:
|
240 |
+
# Functions
|
241 |
+
def find(self, src: typing.Sequence[cv2.UMat], corners: typing.Sequence[cv2.typing.Point], masks: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...
|
242 |
+
|
243 |
+
@classmethod
|
244 |
+
def createDefault(cls, type: int) -> SeamFinder: ...
|
245 |
+
|
246 |
+
|
247 |
+
class GraphCutSeamFinder:
|
248 |
+
# Functions
|
249 |
+
def __init__(self, cost_type: str, terminal_cost: float = ..., bad_region_penalty: float = ...) -> None: ...
|
250 |
+
|
251 |
+
def find(self, src: typing.Sequence[cv2.UMat], corners: typing.Sequence[cv2.typing.Point], masks: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...
|
252 |
+
|
253 |
+
|
254 |
+
class Timelapser:
|
255 |
+
# Functions
|
256 |
+
@classmethod
|
257 |
+
def createDefault(cls, type: int) -> Timelapser: ...
|
258 |
+
|
259 |
+
def initialize(self, corners: typing.Sequence[cv2.typing.Point], sizes: typing.Sequence[cv2.typing.Size]) -> None: ...
|
260 |
+
|
261 |
+
@typing.overload
|
262 |
+
def process(self, img: cv2.typing.MatLike, mask: cv2.typing.MatLike, tl: cv2.typing.Point) -> None: ...
|
263 |
+
@typing.overload
|
264 |
+
def process(self, img: cv2.UMat, mask: cv2.UMat, tl: cv2.typing.Point) -> None: ...
|
265 |
+
|
266 |
+
def getDst(self) -> cv2.UMat: ...
|
267 |
+
|
268 |
+
|
269 |
+
class ProjectorBase:
|
270 |
+
...
|
271 |
+
|
272 |
+
class FeatherBlender(Blender):
|
273 |
+
# Functions
|
274 |
+
def __init__(self, sharpness: float = ...) -> None: ...
|
275 |
+
|
276 |
+
def sharpness(self) -> float: ...
|
277 |
+
|
278 |
+
def setSharpness(self, val: float) -> None: ...
|
279 |
+
|
280 |
+
def prepare(self, dst_roi: cv2.typing.Rect) -> None: ...
|
281 |
+
|
282 |
+
@typing.overload
|
283 |
+
def feed(self, img: cv2.typing.MatLike, mask: cv2.typing.MatLike, tl: cv2.typing.Point) -> None: ...
|
284 |
+
@typing.overload
|
285 |
+
def feed(self, img: cv2.UMat, mask: cv2.UMat, tl: cv2.typing.Point) -> None: ...
|
286 |
+
|
287 |
+
@typing.overload
|
288 |
+
def blend(self, dst: cv2.typing.MatLike, dst_mask: cv2.typing.MatLike) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
289 |
+
@typing.overload
|
290 |
+
def blend(self, dst: cv2.UMat, dst_mask: cv2.UMat) -> tuple[cv2.UMat, cv2.UMat]: ...
|
291 |
+
|
292 |
+
def createWeightMaps(self, masks: typing.Sequence[cv2.UMat], corners: typing.Sequence[cv2.typing.Point], weight_maps: typing.Sequence[cv2.UMat]) -> tuple[cv2.typing.Rect, typing.Sequence[cv2.UMat]]: ...
|
293 |
+
|
294 |
+
|
295 |
+
class MultiBandBlender(Blender):
|
296 |
+
# Functions
|
297 |
+
def __init__(self, try_gpu: int = ..., num_bands: int = ..., weight_type: int = ...) -> None: ...
|
298 |
+
|
299 |
+
def numBands(self) -> int: ...
|
300 |
+
|
301 |
+
def setNumBands(self, val: int) -> None: ...
|
302 |
+
|
303 |
+
def prepare(self, dst_roi: cv2.typing.Rect) -> None: ...
|
304 |
+
|
305 |
+
@typing.overload
|
306 |
+
def feed(self, img: cv2.typing.MatLike, mask: cv2.typing.MatLike, tl: cv2.typing.Point) -> None: ...
|
307 |
+
@typing.overload
|
308 |
+
def feed(self, img: cv2.UMat, mask: cv2.UMat, tl: cv2.typing.Point) -> None: ...
|
309 |
+
|
310 |
+
@typing.overload
|
311 |
+
def blend(self, dst: cv2.typing.MatLike, dst_mask: cv2.typing.MatLike) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
312 |
+
@typing.overload
|
313 |
+
def blend(self, dst: cv2.UMat, dst_mask: cv2.UMat) -> tuple[cv2.UMat, cv2.UMat]: ...
|
314 |
+
|
315 |
+
|
316 |
+
class NoExposureCompensator(ExposureCompensator):
|
317 |
+
# Functions
|
318 |
+
@typing.overload
|
319 |
+
def apply(self, arg1: int, arg2: cv2.typing.Point, arg3: cv2.typing.MatLike, arg4: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
|
320 |
+
@typing.overload
|
321 |
+
def apply(self, arg1: int, arg2: cv2.typing.Point, arg3: cv2.UMat, arg4: cv2.UMat) -> cv2.UMat: ...
|
322 |
+
|
323 |
+
def getMatGains(self, umv: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ...
|
324 |
+
|
325 |
+
def setMatGains(self, umv: typing.Sequence[cv2.typing.MatLike]) -> None: ...
|
326 |
+
|
327 |
+
|
328 |
+
class GainCompensator(ExposureCompensator):
|
329 |
+
# Functions
|
330 |
+
@typing.overload
|
331 |
+
def __init__(self) -> None: ...
|
332 |
+
@typing.overload
|
333 |
+
def __init__(self, nr_feeds: int) -> None: ...
|
334 |
+
|
335 |
+
@typing.overload
|
336 |
+
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
|
337 |
+
@typing.overload
|
338 |
+
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ...
|
339 |
+
|
340 |
+
def getMatGains(self, umv: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ...
|
341 |
+
|
342 |
+
def setMatGains(self, umv: typing.Sequence[cv2.typing.MatLike]) -> None: ...
|
343 |
+
|
344 |
+
def setNrFeeds(self, nr_feeds: int) -> None: ...
|
345 |
+
|
346 |
+
def getNrFeeds(self) -> int: ...
|
347 |
+
|
348 |
+
def setSimilarityThreshold(self, similarity_threshold: float) -> None: ...
|
349 |
+
|
350 |
+
def getSimilarityThreshold(self) -> float: ...
|
351 |
+
|
352 |
+
|
353 |
+
class ChannelsCompensator(ExposureCompensator):
|
354 |
+
# Functions
|
355 |
+
def __init__(self, nr_feeds: int = ...) -> None: ...
|
356 |
+
|
357 |
+
@typing.overload
|
358 |
+
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
|
359 |
+
@typing.overload
|
360 |
+
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ...
|
361 |
+
|
362 |
+
def getMatGains(self, umv: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ...
|
363 |
+
|
364 |
+
def setMatGains(self, umv: typing.Sequence[cv2.typing.MatLike]) -> None: ...
|
365 |
+
|
366 |
+
def setNrFeeds(self, nr_feeds: int) -> None: ...
|
367 |
+
|
368 |
+
def getNrFeeds(self) -> int: ...
|
369 |
+
|
370 |
+
def setSimilarityThreshold(self, similarity_threshold: float) -> None: ...
|
371 |
+
|
372 |
+
def getSimilarityThreshold(self) -> float: ...
|
373 |
+
|
374 |
+
|
375 |
+
class BlocksCompensator(ExposureCompensator):
|
376 |
+
# Functions
|
377 |
+
@typing.overload
|
378 |
+
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
|
379 |
+
@typing.overload
|
380 |
+
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ...
|
381 |
+
|
382 |
+
def getMatGains(self, umv: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ...
|
383 |
+
|
384 |
+
def setMatGains(self, umv: typing.Sequence[cv2.typing.MatLike]) -> None: ...
|
385 |
+
|
386 |
+
def setNrFeeds(self, nr_feeds: int) -> None: ...
|
387 |
+
|
388 |
+
def getNrFeeds(self) -> int: ...
|
389 |
+
|
390 |
+
def setSimilarityThreshold(self, similarity_threshold: float) -> None: ...
|
391 |
+
|
392 |
+
def getSimilarityThreshold(self) -> float: ...
|
393 |
+
|
394 |
+
@typing.overload
|
395 |
+
def setBlockSize(self, width: int, height: int) -> None: ...
|
396 |
+
@typing.overload
|
397 |
+
def setBlockSize(self, size: cv2.typing.Size) -> None: ...
|
398 |
+
|
399 |
+
def getBlockSize(self) -> cv2.typing.Size: ...
|
400 |
+
|
401 |
+
def setNrGainsFilteringIterations(self, nr_iterations: int) -> None: ...
|
402 |
+
|
403 |
+
def getNrGainsFilteringIterations(self) -> int: ...
|
404 |
+
|
405 |
+
|
406 |
+
class BestOf2NearestMatcher(FeaturesMatcher):
|
407 |
+
# Functions
|
408 |
+
def __init__(self, try_use_gpu: bool = ..., match_conf: float = ..., num_matches_thresh1: int = ..., num_matches_thresh2: int = ..., matches_confindece_thresh: float = ...) -> None: ...
|
409 |
+
|
410 |
+
def collectGarbage(self) -> None: ...
|
411 |
+
|
412 |
+
@classmethod
|
413 |
+
def create(cls, try_use_gpu: bool = ..., match_conf: float = ..., num_matches_thresh1: int = ..., num_matches_thresh2: int = ..., matches_confindece_thresh: float = ...) -> BestOf2NearestMatcher: ...
|
414 |
+
|
415 |
+
|
416 |
+
class HomographyBasedEstimator(Estimator):
|
417 |
+
# Functions
|
418 |
+
def __init__(self, is_focals_estimated: bool = ...) -> None: ...
|
419 |
+
|
420 |
+
|
421 |
+
class AffineBasedEstimator(Estimator):
|
422 |
+
# Functions
|
423 |
+
def __init__(self) -> None: ...
|
424 |
+
|
425 |
+
|
426 |
+
class BundleAdjusterBase(Estimator):
|
427 |
+
# Functions
|
428 |
+
def refinementMask(self) -> cv2.typing.MatLike: ...
|
429 |
+
|
430 |
+
def setRefinementMask(self, mask: cv2.typing.MatLike) -> None: ...
|
431 |
+
|
432 |
+
def confThresh(self) -> float: ...
|
433 |
+
|
434 |
+
def setConfThresh(self, conf_thresh: float) -> None: ...
|
435 |
+
|
436 |
+
def termCriteria(self) -> cv2.typing.TermCriteria: ...
|
437 |
+
|
438 |
+
def setTermCriteria(self, term_criteria: cv2.typing.TermCriteria) -> None: ...
|
439 |
+
|
440 |
+
|
441 |
+
class NoSeamFinder(SeamFinder):
|
442 |
+
# Functions
|
443 |
+
def find(self, arg1: typing.Sequence[cv2.UMat], arg2: typing.Sequence[cv2.typing.Point], arg3: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...
|
444 |
+
|
445 |
+
|
446 |
+
class PairwiseSeamFinder(SeamFinder):
|
447 |
+
# Functions
|
448 |
+
def find(self, src: typing.Sequence[cv2.UMat], corners: typing.Sequence[cv2.typing.Point], masks: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...
|
449 |
+
|
450 |
+
|
451 |
+
class DpSeamFinder(SeamFinder):
|
452 |
+
# Functions
|
453 |
+
def __init__(self, costFunc: str) -> None: ...
|
454 |
+
|
455 |
+
def setCostFunction(self, val: str) -> None: ...
|
456 |
+
|
457 |
+
|
458 |
+
class TimelapserCrop(Timelapser):
|
459 |
+
...
|
460 |
+
|
461 |
+
class SphericalProjector(ProjectorBase):
|
462 |
+
# Functions
|
463 |
+
def mapForward(self, x: float, y: float, u: float, v: float) -> None: ...
|
464 |
+
|
465 |
+
def mapBackward(self, u: float, v: float, x: float, y: float) -> None: ...
|
466 |
+
|
467 |
+
|
468 |
+
class BlocksGainCompensator(BlocksCompensator):
|
469 |
+
# Functions
|
470 |
+
@typing.overload
|
471 |
+
def __init__(self, bl_width: int = ..., bl_height: int = ...) -> None: ...
|
472 |
+
@typing.overload
|
473 |
+
def __init__(self, bl_width: int, bl_height: int, nr_feeds: int) -> None: ...
|
474 |
+
|
475 |
+
@typing.overload
|
476 |
+
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
|
477 |
+
@typing.overload
|
478 |
+
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ...
|
479 |
+
|
480 |
+
def getMatGains(self, umv: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ...
|
481 |
+
|
482 |
+
def setMatGains(self, umv: typing.Sequence[cv2.typing.MatLike]) -> None: ...
|
483 |
+
|
484 |
+
|
485 |
+
class BlocksChannelsCompensator(BlocksCompensator):
|
486 |
+
# Functions
|
487 |
+
def __init__(self, bl_width: int = ..., bl_height: int = ..., nr_feeds: int = ...) -> None: ...
|
488 |
+
|
489 |
+
|
490 |
+
class BestOf2NearestRangeMatcher(BestOf2NearestMatcher):
|
491 |
+
# Functions
|
492 |
+
def __init__(self, range_width: int = ..., try_use_gpu: bool = ..., match_conf: float = ..., num_matches_thresh1: int = ..., num_matches_thresh2: int = ...) -> None: ...
|
493 |
+
|
494 |
+
|
495 |
+
class AffineBestOf2NearestMatcher(BestOf2NearestMatcher):
|
496 |
+
# Functions
|
497 |
+
def __init__(self, full_affine: bool = ..., try_use_gpu: bool = ..., match_conf: float = ..., num_matches_thresh1: int = ...) -> None: ...
|
498 |
+
|
499 |
+
|
500 |
+
class NoBundleAdjuster(BundleAdjusterBase):
|
501 |
+
# Functions
|
502 |
+
def __init__(self) -> None: ...
|
503 |
+
|
504 |
+
|
505 |
+
class BundleAdjusterReproj(BundleAdjusterBase):
|
506 |
+
# Functions
|
507 |
+
def __init__(self) -> None: ...
|
508 |
+
|
509 |
+
|
510 |
+
class BundleAdjusterRay(BundleAdjusterBase):
|
511 |
+
# Functions
|
512 |
+
def __init__(self) -> None: ...
|
513 |
+
|
514 |
+
|
515 |
+
class BundleAdjusterAffine(BundleAdjusterBase):
|
516 |
+
# Functions
|
517 |
+
def __init__(self) -> None: ...
|
518 |
+
|
519 |
+
|
520 |
+
class BundleAdjusterAffinePartial(BundleAdjusterBase):
|
521 |
+
# Functions
|
522 |
+
def __init__(self) -> None: ...
|
523 |
+
|
524 |
+
|
525 |
+
class VoronoiSeamFinder(PairwiseSeamFinder):
|
526 |
+
# Functions
|
527 |
+
def find(self, src: typing.Sequence[cv2.UMat], corners: typing.Sequence[cv2.typing.Point], masks: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...
|
528 |
+
|
529 |
+
|
530 |
+
|
531 |
+
# Functions
|
532 |
+
def calibrateRotatingCamera(Hs: typing.Sequence[cv2.typing.MatLike], K: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike]: ...
|
533 |
+
|
534 |
+
@typing.overload
|
535 |
+
def computeImageFeatures(featuresFinder: cv2.Feature2D, images: typing.Sequence[cv2.typing.MatLike], masks: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[ImageFeatures]: ...
|
536 |
+
@typing.overload
|
537 |
+
def computeImageFeatures(featuresFinder: cv2.Feature2D, images: typing.Sequence[cv2.UMat], masks: typing.Sequence[cv2.UMat] | None = ...) -> typing.Sequence[ImageFeatures]: ...
|
538 |
+
|
539 |
+
@typing.overload
|
540 |
+
def computeImageFeatures2(featuresFinder: cv2.Feature2D, image: cv2.typing.MatLike, mask: cv2.typing.MatLike | None = ...) -> ImageFeatures: ...
|
541 |
+
@typing.overload
|
542 |
+
def computeImageFeatures2(featuresFinder: cv2.Feature2D, image: cv2.UMat, mask: cv2.UMat | None = ...) -> ImageFeatures: ...
|
543 |
+
|
544 |
+
@typing.overload
|
545 |
+
def createLaplacePyr(img: cv2.typing.MatLike, num_levels: int, pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...
|
546 |
+
@typing.overload
|
547 |
+
def createLaplacePyr(img: cv2.UMat, num_levels: int, pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...
|
548 |
+
|
549 |
+
@typing.overload
|
550 |
+
def createLaplacePyrGpu(img: cv2.typing.MatLike, num_levels: int, pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...
|
551 |
+
@typing.overload
|
552 |
+
def createLaplacePyrGpu(img: cv2.UMat, num_levels: int, pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...
|
553 |
+
|
554 |
+
@typing.overload
|
555 |
+
def createWeightMap(mask: cv2.typing.MatLike, sharpness: float, weight: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
|
556 |
+
@typing.overload
|
557 |
+
def createWeightMap(mask: cv2.UMat, sharpness: float, weight: cv2.UMat) -> cv2.UMat: ...
|
558 |
+
|
559 |
+
def focalsFromHomography(H: cv2.typing.MatLike, f0: float, f1: float, f0_ok: bool, f1_ok: bool) -> None: ...
|
560 |
+
|
561 |
+
def leaveBiggestComponent(features: typing.Sequence[ImageFeatures], pairwise_matches: typing.Sequence[MatchesInfo], conf_threshold: float) -> typing.Sequence[int]: ...
|
562 |
+
|
563 |
+
def matchesGraphAsString(paths: typing.Sequence[str], pairwise_matches: typing.Sequence[MatchesInfo], conf_threshold: float) -> str: ...
|
564 |
+
|
565 |
+
@typing.overload
|
566 |
+
def normalizeUsingWeightMap(weight: cv2.typing.MatLike, src: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
|
567 |
+
@typing.overload
|
568 |
+
def normalizeUsingWeightMap(weight: cv2.UMat, src: cv2.UMat) -> cv2.UMat: ...
|
569 |
+
|
570 |
+
def overlapRoi(tl1: cv2.typing.Point, tl2: cv2.typing.Point, sz1: cv2.typing.Size, sz2: cv2.typing.Size, roi: cv2.typing.Rect) -> bool: ...
|
571 |
+
|
572 |
+
def restoreImageFromLaplacePyr(pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...
|
573 |
+
|
574 |
+
def restoreImageFromLaplacePyrGpu(pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...
|
575 |
+
|
576 |
+
@typing.overload
|
577 |
+
def resultRoi(corners: typing.Sequence[cv2.typing.Point], images: typing.Sequence[cv2.UMat]) -> cv2.typing.Rect: ...
|
578 |
+
@typing.overload
|
579 |
+
def resultRoi(corners: typing.Sequence[cv2.typing.Point], sizes: typing.Sequence[cv2.typing.Size]) -> cv2.typing.Rect: ...
|
580 |
+
|
581 |
+
def resultRoiIntersection(corners: typing.Sequence[cv2.typing.Point], sizes: typing.Sequence[cv2.typing.Size]) -> cv2.typing.Rect: ...
|
582 |
+
|
583 |
+
def resultTl(corners: typing.Sequence[cv2.typing.Point]) -> cv2.typing.Point: ...
|
584 |
+
|
585 |
+
def selectRandomSubset(count: int, size: int, subset: typing.Sequence[int]) -> None: ...
|
586 |
+
|
587 |
+
def stitchingLogLevel() -> int: ...
|
588 |
+
|
589 |
+
@typing.overload
|
590 |
+
def strip(params: cv2.gapi.ie.PyParams) -> cv2.gapi.GNetParam: ...
|
591 |
+
@typing.overload
|
592 |
+
def strip(params: cv2.gapi.onnx.PyParams) -> cv2.gapi.GNetParam: ...
|
593 |
+
@typing.overload
|
594 |
+
def strip(params: cv2.gapi.ov.PyParams) -> cv2.gapi.GNetParam: ...
|
595 |
+
|
596 |
+
def waveCorrect(rmats: typing.Sequence[cv2.typing.MatLike], kind: WaveCorrectKind) -> typing.Sequence[cv2.typing.MatLike]: ...
|
597 |
+
|
598 |
+
|