import cv2 import cv2.typing import typing # Enumerations VAR_NUMERICAL: int VAR_ORDERED: int VAR_CATEGORICAL: int VariableTypes = int """One of [VAR_NUMERICAL, VAR_ORDERED, VAR_CATEGORICAL]""" TEST_ERROR: int TRAIN_ERROR: int ErrorTypes = int """One of [TEST_ERROR, TRAIN_ERROR]""" ROW_SAMPLE: int COL_SAMPLE: int SampleTypes = int """One of [ROW_SAMPLE, COL_SAMPLE]""" StatModel_UPDATE_MODEL: int STAT_MODEL_UPDATE_MODEL: int StatModel_RAW_OUTPUT: int STAT_MODEL_RAW_OUTPUT: int StatModel_COMPRESSED_INPUT: int STAT_MODEL_COMPRESSED_INPUT: int StatModel_PREPROCESSED_INPUT: int STAT_MODEL_PREPROCESSED_INPUT: int StatModel_Flags = int """One of [StatModel_UPDATE_MODEL, STAT_MODEL_UPDATE_MODEL, StatModel_RAW_OUTPUT, STAT_MODEL_RAW_OUTPUT, StatModel_COMPRESSED_INPUT, STAT_MODEL_COMPRESSED_INPUT, StatModel_PREPROCESSED_INPUT, STAT_MODEL_PREPROCESSED_INPUT]""" KNearest_BRUTE_FORCE: int KNEAREST_BRUTE_FORCE: int KNearest_KDTREE: int KNEAREST_KDTREE: int KNearest_Types = int """One of [KNearest_BRUTE_FORCE, KNEAREST_BRUTE_FORCE, KNearest_KDTREE, KNEAREST_KDTREE]""" SVM_C_SVC: int SVM_NU_SVC: int SVM_ONE_CLASS: int SVM_EPS_SVR: int SVM_NU_SVR: int SVM_Types = int """One of [SVM_C_SVC, SVM_NU_SVC, SVM_ONE_CLASS, SVM_EPS_SVR, SVM_NU_SVR]""" SVM_CUSTOM: int SVM_LINEAR: int SVM_POLY: int SVM_RBF: int SVM_SIGMOID: int SVM_CHI2: int SVM_INTER: int SVM_KernelTypes = int """One of [SVM_CUSTOM, SVM_LINEAR, SVM_POLY, SVM_RBF, SVM_SIGMOID, SVM_CHI2, SVM_INTER]""" SVM_C: int SVM_GAMMA: int SVM_P: int SVM_NU: int SVM_COEF: int SVM_DEGREE: int SVM_ParamTypes = int """One of [SVM_C, SVM_GAMMA, SVM_P, SVM_NU, SVM_COEF, SVM_DEGREE]""" EM_COV_MAT_SPHERICAL: int EM_COV_MAT_DIAGONAL: int EM_COV_MAT_GENERIC: int EM_COV_MAT_DEFAULT: int EM_Types = int """One of [EM_COV_MAT_SPHERICAL, EM_COV_MAT_DIAGONAL, EM_COV_MAT_GENERIC, EM_COV_MAT_DEFAULT]""" EM_DEFAULT_NCLUSTERS: int EM_DEFAULT_MAX_ITERS: int EM_START_E_STEP: int EM_START_M_STEP: int EM_START_AUTO_STEP: int DTrees_PREDICT_AUTO: int DTREES_PREDICT_AUTO: int DTrees_PREDICT_SUM: int DTREES_PREDICT_SUM: int DTrees_PREDICT_MAX_VOTE: int DTREES_PREDICT_MAX_VOTE: int DTrees_PREDICT_MASK: int DTREES_PREDICT_MASK: int DTrees_Flags = int """One of [DTrees_PREDICT_AUTO, DTREES_PREDICT_AUTO, DTrees_PREDICT_SUM, DTREES_PREDICT_SUM, DTrees_PREDICT_MAX_VOTE, DTREES_PREDICT_MAX_VOTE, DTrees_PREDICT_MASK, DTREES_PREDICT_MASK]""" Boost_DISCRETE: int BOOST_DISCRETE: int Boost_REAL: int BOOST_REAL: int Boost_LOGIT: int BOOST_LOGIT: int Boost_GENTLE: int BOOST_GENTLE: int Boost_Types = int """One of [Boost_DISCRETE, BOOST_DISCRETE, Boost_REAL, BOOST_REAL, Boost_LOGIT, BOOST_LOGIT, Boost_GENTLE, BOOST_GENTLE]""" ANN_MLP_BACKPROP: int ANN_MLP_RPROP: int ANN_MLP_ANNEAL: int ANN_MLP_TrainingMethods = int """One of [ANN_MLP_BACKPROP, ANN_MLP_RPROP, ANN_MLP_ANNEAL]""" ANN_MLP_IDENTITY: int ANN_MLP_SIGMOID_SYM: int ANN_MLP_GAUSSIAN: int ANN_MLP_RELU: int ANN_MLP_LEAKYRELU: int ANN_MLP_ActivationFunctions = int """One of [ANN_MLP_IDENTITY, ANN_MLP_SIGMOID_SYM, ANN_MLP_GAUSSIAN, ANN_MLP_RELU, ANN_MLP_LEAKYRELU]""" ANN_MLP_UPDATE_WEIGHTS: int ANN_MLP_NO_INPUT_SCALE: int ANN_MLP_NO_OUTPUT_SCALE: int ANN_MLP_TrainFlags = int """One of [ANN_MLP_UPDATE_WEIGHTS, ANN_MLP_NO_INPUT_SCALE, ANN_MLP_NO_OUTPUT_SCALE]""" LogisticRegression_REG_DISABLE: int LOGISTIC_REGRESSION_REG_DISABLE: int LogisticRegression_REG_L1: int LOGISTIC_REGRESSION_REG_L1: int LogisticRegression_REG_L2: int LOGISTIC_REGRESSION_REG_L2: int LogisticRegression_RegKinds = int """One of [LogisticRegression_REG_DISABLE, LOGISTIC_REGRESSION_REG_DISABLE, LogisticRegression_REG_L1, LOGISTIC_REGRESSION_REG_L1, LogisticRegression_REG_L2, LOGISTIC_REGRESSION_REG_L2]""" LogisticRegression_BATCH: int LOGISTIC_REGRESSION_BATCH: int LogisticRegression_MINI_BATCH: int LOGISTIC_REGRESSION_MINI_BATCH: int LogisticRegression_Methods = int """One of [LogisticRegression_BATCH, LOGISTIC_REGRESSION_BATCH, LogisticRegression_MINI_BATCH, LOGISTIC_REGRESSION_MINI_BATCH]""" SVMSGD_SGD: int SVMSGD_ASGD: int SVMSGD_SvmsgdType = int """One of [SVMSGD_SGD, SVMSGD_ASGD]""" SVMSGD_SOFT_MARGIN: int SVMSGD_HARD_MARGIN: int SVMSGD_MarginType = int """One of [SVMSGD_SOFT_MARGIN, SVMSGD_HARD_MARGIN]""" # Classes class ParamGrid: minVal: float maxVal: float logStep: float # Functions @classmethod def create(cls, minVal: float = ..., maxVal: float = ..., logstep: float = ...) -> ParamGrid: ... class TrainData: # Functions def getLayout(self) -> int: ... def getNTrainSamples(self) -> int: ... def getNTestSamples(self) -> int: ... def getNSamples(self) -> int: ... def getNVars(self) -> int: ... def getNAllVars(self) -> int: ... @typing.overload def getSample(self, varIdx: cv2.typing.MatLike, sidx: int, buf: float) -> None: ... @typing.overload def getSample(self, varIdx: cv2.UMat, sidx: int, buf: float) -> None: ... def getSamples(self) -> cv2.typing.MatLike: ... def getMissing(self) -> cv2.typing.MatLike: ... def getTrainSamples(self, layout: int = ..., compressSamples: bool = ..., compressVars: bool = ...) -> cv2.typing.MatLike: ... def getTrainResponses(self) -> cv2.typing.MatLike: ... def getTrainNormCatResponses(self) -> cv2.typing.MatLike: ... def getTestResponses(self) -> cv2.typing.MatLike: ... def getTestNormCatResponses(self) -> cv2.typing.MatLike: ... def getResponses(self) -> cv2.typing.MatLike: ... def getNormCatResponses(self) -> cv2.typing.MatLike: ... def getSampleWeights(self) -> cv2.typing.MatLike: ... def getTrainSampleWeights(self) -> cv2.typing.MatLike: ... def getTestSampleWeights(self) -> cv2.typing.MatLike: ... def getVarIdx(self) -> cv2.typing.MatLike: ... def getVarType(self) -> cv2.typing.MatLike: ... def getVarSymbolFlags(self) -> cv2.typing.MatLike: ... def getResponseType(self) -> int: ... def getTrainSampleIdx(self) -> cv2.typing.MatLike: ... def getTestSampleIdx(self) -> cv2.typing.MatLike: ... @typing.overload def getValues(self, vi: int, sidx: cv2.typing.MatLike, values: float) -> None: ... @typing.overload def getValues(self, vi: int, sidx: cv2.UMat, values: float) -> None: ... def getDefaultSubstValues(self) -> cv2.typing.MatLike: ... def getCatCount(self, vi: int) -> int: ... def getClassLabels(self) -> cv2.typing.MatLike: ... def getCatOfs(self) -> cv2.typing.MatLike: ... def getCatMap(self) -> cv2.typing.MatLike: ... def setTrainTestSplit(self, count: int, shuffle: bool = ...) -> None: ... def setTrainTestSplitRatio(self, ratio: float, shuffle: bool = ...) -> None: ... def shuffleTrainTest(self) -> None: ... def getTestSamples(self) -> cv2.typing.MatLike: ... def getNames(self, names: typing.Sequence[str]) -> None: ... @staticmethod def getSubVector(vec: cv2.typing.MatLike, idx: cv2.typing.MatLike) -> cv2.typing.MatLike: ... @staticmethod def getSubMatrix(matrix: cv2.typing.MatLike, idx: cv2.typing.MatLike, layout: int) -> cv2.typing.MatLike: ... @classmethod @typing.overload def create(cls, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, varIdx: cv2.typing.MatLike | None = ..., sampleIdx: cv2.typing.MatLike | None = ..., sampleWeights: cv2.typing.MatLike | None = ..., varType: cv2.typing.MatLike | None = ...) -> TrainData: ... @classmethod @typing.overload def create(cls, samples: cv2.UMat, layout: int, responses: cv2.UMat, varIdx: cv2.UMat | None = ..., sampleIdx: cv2.UMat | None = ..., sampleWeights: cv2.UMat | None = ..., varType: cv2.UMat | None = ...) -> TrainData: ... class StatModel(cv2.Algorithm): # Functions def getVarCount(self) -> int: ... def empty(self) -> bool: ... def isTrained(self) -> bool: ... def isClassifier(self) -> bool: ... @typing.overload def train(self, trainData: TrainData, flags: int = ...) -> bool: ... @typing.overload def train(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike) -> bool: ... @typing.overload def train(self, samples: cv2.UMat, layout: int, responses: cv2.UMat) -> bool: ... @typing.overload def calcError(self, data: TrainData, test: bool, resp: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike]: ... @typing.overload def calcError(self, data: TrainData, test: bool, resp: cv2.UMat | None = ...) -> tuple[float, cv2.UMat]: ... @typing.overload def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ... @typing.overload def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ... class NormalBayesClassifier(StatModel): # Functions @typing.overload def predictProb(self, inputs: cv2.typing.MatLike, outputs: cv2.typing.MatLike | None = ..., outputProbs: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ... @typing.overload def predictProb(self, inputs: cv2.UMat, outputs: cv2.UMat | None = ..., outputProbs: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ... @classmethod def create(cls) -> NormalBayesClassifier: ... @classmethod def load(cls, filepath: str, nodeName: str = ...) -> NormalBayesClassifier: ... class KNearest(StatModel): # Functions def getDefaultK(self) -> int: ... def setDefaultK(self, val: int) -> None: ... def getIsClassifier(self) -> bool: ... def setIsClassifier(self, val: bool) -> None: ... def getEmax(self) -> int: ... def setEmax(self, val: int) -> None: ... def getAlgorithmType(self) -> int: ... def setAlgorithmType(self, val: int) -> None: ... @typing.overload def findNearest(self, samples: cv2.typing.MatLike, k: int, results: cv2.typing.MatLike | None = ..., neighborResponses: cv2.typing.MatLike | None = ..., dist: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ... @typing.overload def findNearest(self, samples: cv2.UMat, k: int, results: cv2.UMat | None = ..., neighborResponses: cv2.UMat | None = ..., dist: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat, cv2.UMat]: ... @classmethod def create(cls) -> KNearest: ... @classmethod def load(cls, filepath: str) -> KNearest: ... class SVM(StatModel): # Functions def getType(self) -> int: ... def setType(self, val: int) -> None: ... def getGamma(self) -> float: ... def setGamma(self, val: float) -> None: ... def getCoef0(self) -> float: ... def setCoef0(self, val: float) -> None: ... def getDegree(self) -> float: ... def setDegree(self, val: float) -> None: ... def getC(self) -> float: ... def setC(self, val: float) -> None: ... def getNu(self) -> float: ... def setNu(self, val: float) -> None: ... def getP(self) -> float: ... def setP(self, val: float) -> None: ... def getClassWeights(self) -> cv2.typing.MatLike: ... def setClassWeights(self, val: cv2.typing.MatLike) -> None: ... def getTermCriteria(self) -> cv2.typing.TermCriteria: ... def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... def getKernelType(self) -> int: ... def setKernel(self, kernelType: int) -> None: ... @typing.overload def trainAuto(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ... @typing.overload def trainAuto(self, samples: cv2.UMat, layout: int, responses: cv2.UMat, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ... def getSupportVectors(self) -> cv2.typing.MatLike: ... def getUncompressedSupportVectors(self) -> cv2.typing.MatLike: ... @typing.overload def getDecisionFunction(self, i: int, alpha: cv2.typing.MatLike | None = ..., svidx: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ... @typing.overload def getDecisionFunction(self, i: int, alpha: cv2.UMat | None = ..., svidx: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ... @staticmethod def getDefaultGridPtr(param_id: int) -> ParamGrid: ... @classmethod def create(cls) -> SVM: ... @classmethod def load(cls, filepath: str) -> SVM: ... class EM(StatModel): # Functions def getClustersNumber(self) -> int: ... def setClustersNumber(self, val: int) -> None: ... def getCovarianceMatrixType(self) -> int: ... def setCovarianceMatrixType(self, val: int) -> None: ... def getTermCriteria(self) -> cv2.typing.TermCriteria: ... def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... def getWeights(self) -> cv2.typing.MatLike: ... def getMeans(self) -> cv2.typing.MatLike: ... def getCovs(self, covs: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ... @typing.overload def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ... @typing.overload def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ... @typing.overload def predict2(self, sample: cv2.typing.MatLike, probs: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.Vec2d, cv2.typing.MatLike]: ... @typing.overload def predict2(self, sample: cv2.UMat, probs: cv2.UMat | None = ...) -> tuple[cv2.typing.Vec2d, cv2.UMat]: ... @typing.overload def trainEM(self, samples: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ... @typing.overload def trainEM(self, samples: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ... @typing.overload def trainE(self, samples: cv2.typing.MatLike, means0: cv2.typing.MatLike, covs0: cv2.typing.MatLike | None = ..., weights0: cv2.typing.MatLike | None = ..., logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ... @typing.overload def trainE(self, samples: cv2.UMat, means0: cv2.UMat, covs0: cv2.UMat | None = ..., weights0: cv2.UMat | None = ..., logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ... @typing.overload def trainM(self, samples: cv2.typing.MatLike, probs0: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ... @typing.overload def trainM(self, samples: cv2.UMat, probs0: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ... @classmethod def create(cls) -> EM: ... @classmethod def load(cls, filepath: str, nodeName: str = ...) -> EM: ... class DTrees(StatModel): # Functions def getMaxCategories(self) -> int: ... def setMaxCategories(self, val: int) -> None: ... def getMaxDepth(self) -> int: ... def setMaxDepth(self, val: int) -> None: ... def getMinSampleCount(self) -> int: ... def setMinSampleCount(self, val: int) -> None: ... def getCVFolds(self) -> int: ... def setCVFolds(self, val: int) -> None: ... def getUseSurrogates(self) -> bool: ... def setUseSurrogates(self, val: bool) -> None: ... def getUse1SERule(self) -> bool: ... def setUse1SERule(self, val: bool) -> None: ... def getTruncatePrunedTree(self) -> bool: ... def setTruncatePrunedTree(self, val: bool) -> None: ... def getRegressionAccuracy(self) -> float: ... def setRegressionAccuracy(self, val: float) -> None: ... def getPriors(self) -> cv2.typing.MatLike: ... def setPriors(self, val: cv2.typing.MatLike) -> None: ... @classmethod def create(cls) -> DTrees: ... @classmethod def load(cls, filepath: str, nodeName: str = ...) -> DTrees: ... class ANN_MLP(StatModel): # Functions def setTrainMethod(self, method: int, param1: float = ..., param2: float = ...) -> None: ... def getTrainMethod(self) -> int: ... def setActivationFunction(self, type: int, param1: float = ..., param2: float = ...) -> None: ... @typing.overload def setLayerSizes(self, _layer_sizes: cv2.typing.MatLike) -> None: ... @typing.overload def setLayerSizes(self, _layer_sizes: cv2.UMat) -> None: ... def getLayerSizes(self) -> cv2.typing.MatLike: ... def getTermCriteria(self) -> cv2.typing.TermCriteria: ... def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... def getBackpropWeightScale(self) -> float: ... def setBackpropWeightScale(self, val: float) -> None: ... def getBackpropMomentumScale(self) -> float: ... def setBackpropMomentumScale(self, val: float) -> None: ... def getRpropDW0(self) -> float: ... def setRpropDW0(self, val: float) -> None: ... def getRpropDWPlus(self) -> float: ... def setRpropDWPlus(self, val: float) -> None: ... def getRpropDWMinus(self) -> float: ... def setRpropDWMinus(self, val: float) -> None: ... def getRpropDWMin(self) -> float: ... def setRpropDWMin(self, val: float) -> None: ... def getRpropDWMax(self) -> float: ... def setRpropDWMax(self, val: float) -> None: ... def getAnnealInitialT(self) -> float: ... def setAnnealInitialT(self, val: float) -> None: ... def getAnnealFinalT(self) -> float: ... def setAnnealFinalT(self, val: float) -> None: ... def getAnnealCoolingRatio(self) -> float: ... def setAnnealCoolingRatio(self, val: float) -> None: ... def getAnnealItePerStep(self) -> int: ... def setAnnealItePerStep(self, val: int) -> None: ... def getWeights(self, layerIdx: int) -> cv2.typing.MatLike: ... @classmethod def create(cls) -> ANN_MLP: ... @classmethod def load(cls, filepath: str) -> ANN_MLP: ... class LogisticRegression(StatModel): # Functions def getLearningRate(self) -> float: ... def setLearningRate(self, val: float) -> None: ... def getIterations(self) -> int: ... def setIterations(self, val: int) -> None: ... def getRegularization(self) -> int: ... def setRegularization(self, val: int) -> None: ... def getTrainMethod(self) -> int: ... def setTrainMethod(self, val: int) -> None: ... def getMiniBatchSize(self) -> int: ... def setMiniBatchSize(self, val: int) -> None: ... def getTermCriteria(self) -> cv2.typing.TermCriteria: ... def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... @typing.overload def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ... @typing.overload def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ... def get_learnt_thetas(self) -> cv2.typing.MatLike: ... @classmethod def create(cls) -> LogisticRegression: ... @classmethod def load(cls, filepath: str, nodeName: str = ...) -> LogisticRegression: ... class SVMSGD(StatModel): # Functions def getWeights(self) -> cv2.typing.MatLike: ... def getShift(self) -> float: ... @classmethod def create(cls) -> SVMSGD: ... @classmethod def load(cls, filepath: str, nodeName: str = ...) -> SVMSGD: ... def setOptimalParameters(self, svmsgdType: int = ..., marginType: int = ...) -> None: ... def getSvmsgdType(self) -> int: ... def setSvmsgdType(self, svmsgdType: int) -> None: ... def getMarginType(self) -> int: ... def setMarginType(self, marginType: int) -> None: ... def getMarginRegularization(self) -> float: ... def setMarginRegularization(self, marginRegularization: float) -> None: ... def getInitialStepSize(self) -> float: ... def setInitialStepSize(self, InitialStepSize: float) -> None: ... def getStepDecreasingPower(self) -> float: ... def setStepDecreasingPower(self, stepDecreasingPower: float) -> None: ... def getTermCriteria(self) -> cv2.typing.TermCriteria: ... def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... class RTrees(DTrees): # Functions def getCalculateVarImportance(self) -> bool: ... def setCalculateVarImportance(self, val: bool) -> None: ... def getActiveVarCount(self) -> int: ... def setActiveVarCount(self, val: int) -> None: ... def getTermCriteria(self) -> cv2.typing.TermCriteria: ... def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ... def getVarImportance(self) -> cv2.typing.MatLike: ... @typing.overload def getVotes(self, samples: cv2.typing.MatLike, flags: int, results: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ... @typing.overload def getVotes(self, samples: cv2.UMat, flags: int, results: cv2.UMat | None = ...) -> cv2.UMat: ... def getOOBError(self) -> float: ... @classmethod def create(cls) -> RTrees: ... @classmethod def load(cls, filepath: str, nodeName: str = ...) -> RTrees: ... class Boost(DTrees): # Functions def getBoostType(self) -> int: ... def setBoostType(self, val: int) -> None: ... def getWeakCount(self) -> int: ... def setWeakCount(self, val: int) -> None: ... def getWeightTrimRate(self) -> float: ... def setWeightTrimRate(self, val: float) -> None: ... @classmethod def create(cls) -> Boost: ... @classmethod def load(cls, filepath: str, nodeName: str = ...) -> Boost: ...