erav2s13demo / app.py
dusaurabh's picture
Update app.py
34a886c verified
raw
history blame
2.9 kB
import torch, torchvision
from torchvision import transforms
import numpy as np
import gradio as gr
from PIL import Image
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from resnet import ResNet18
import gradio as gr
model = ResNet18()
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False)
inv_normalize = transforms.Normalize(
mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23],
std=[1/0.23, 1/0.23, 1/0.23]
)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
def resize_image_pil(image, new_width, new_height):
# Convert to PIL image
img = Image.fromarray(np.array(image))
# Get original size
width, height = img.size
# Calculate scale
width_scale = new_width / width
height_scale = new_height / height
scale = min(width_scale, height_scale)
# Resize
resized = img.resize((int(width*scale), int(height*scale)), Image.NEAREST)
# Crop to exact size
resized = resized.crop((0, 0, new_width, new_height))
return resized
def inference(input_img, transparency = 0.5, target_layer_number = -1):
input_img = resize_image_pil(input_img, 32, 32)
input_img = np.array(input_img)
org_img = input_img
input_img = input_img.reshape((32, 32, 3))
transform = transforms.ToTensor()
input_img = transform(input_img)
input_img = input_img
input_img = input_img.unsqueeze(0)
outputs = model(input_img)
softmax = torch.nn.Softmax(dim=0)
o = softmax(outputs.flatten())
confidences = {classes[i]: float(o[i]) for i in range(10)}
_, prediction = torch.max(outputs, 1)
target_layers = [model.layer2[target_layer_number]]
cam = GradCAM(model=model, target_layers=target_layers)
grayscale_cam = cam(input_tensor=input_img, targets=None)
grayscale_cam = grayscale_cam[0, :]
img = input_img.squeeze(0)
img = inv_normalize(img)
print(transparency)
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
return classes[prediction[0].item()], visualization, confidences
title = "CIFAR10 trained on ResNet18 Model with GradCAM"
description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
examples = [["cat.jpg", 0.5, -1], ["dog.jpg", 0.5, -1]]
demo = gr.Interface(
inference,
inputs = [
gr.Image(width=256, height=256, label="Input Image"), gr.Slider
(0, 1, value = 0.5, label="Overall Opacity of Image"),
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")
],
outputs = [
"text",
gr.Image(width=256, height=256, label="Output"),
gr.Label(num_top_classes=5)
],
title = title,
description = description,
examples = examples,
)
demo.launch()