Spaces:
Sleeping
Sleeping
import torch, torchvision | |
from torchvision import transforms | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
from pytorch_grad_cam import GradCAM | |
from pytorch_grad_cam.utils.image import show_cam_on_image | |
from resnet import ResNet18 | |
import gradio as gr | |
model = ResNet18() | |
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False) | |
inv_normalize = transforms.Normalize( | |
mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23], | |
std=[1/0.23, 1/0.23, 1/0.23] | |
) | |
classes = ('plane', 'car', 'bird', 'cat', 'deer', | |
'dog', 'frog', 'horse', 'ship', 'truck') | |
def resize_image_pil(image, new_width, new_height): | |
# Convert to PIL image | |
img = Image.fromarray(np.array(image)) | |
# Get original size | |
width, height = img.size | |
# Calculate scale | |
width_scale = new_width / width | |
height_scale = new_height / height | |
scale = min(width_scale, height_scale) | |
# Resize | |
resized = img.resize((int(width*scale), int(height*scale)), Image.NEAREST) | |
# Crop to exact size | |
resized = resized.crop((0, 0, new_width, new_height)) | |
return resized | |
def inference(input_img, transparency = 0.5, target_layer_number = -1): | |
input_img = resize_image_pil(input_img, 32, 32) | |
input_img = np.array(input_img) | |
org_img = input_img | |
input_img = input_img.reshape((32, 32, 3)) | |
transform = transforms.ToTensor() | |
input_img = transform(input_img) | |
input_img = input_img | |
input_img = input_img.unsqueeze(0) | |
outputs = model(input_img) | |
softmax = torch.nn.Softmax(dim=0) | |
o = softmax(outputs.flatten()) | |
confidences = {classes[i]: float(o[i]) for i in range(10)} | |
_, prediction = torch.max(outputs, 1) | |
target_layers = [model.layer2[target_layer_number]] | |
cam = GradCAM(model=model, target_layers=target_layers) | |
grayscale_cam = cam(input_tensor=input_img, targets=None) | |
grayscale_cam = grayscale_cam[0, :] | |
img = input_img.squeeze(0) | |
img = inv_normalize(img) | |
print(transparency) | |
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency) | |
return classes[prediction[0].item()], visualization, confidences | |
title = "CIFAR10 trained on ResNet18 Model with GradCAM" | |
description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results" | |
examples = [["cat.jpg", 0.5, -1], ["dog.jpg", 0.5, -1]] | |
demo = gr.Interface( | |
inference, | |
inputs = [ | |
gr.Image(width=256, height=256, label="Input Image"), gr.Slider | |
(0, 1, value = 0.5, label="Overall Opacity of Image"), | |
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?") | |
], | |
outputs = [ | |
"text", | |
gr.Image(width=256, height=256, label="Output"), | |
gr.Label(num_top_classes=5) | |
], | |
title = title, | |
description = description, | |
examples = examples, | |
) | |
demo.launch() | |