import torch, torchvision from torchvision import transforms import numpy as np import gradio as gr from PIL import Image from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image from resnet import ResNet18 import gradio as gr model = ResNet18() model.load_state_dict(torch.load("cifar10_saved_model.pth", map_location=torch.device('cpu')), strict=False) inv_normalize = transforms.Normalize( mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23], std=[1/0.23, 1/0.23, 1/0.23] ) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') def resize_image_pil(image, new_width, new_height): # Convert to PIL image img = Image.fromarray(np.array(image)) # Get original size width, height = img.size # Calculate scale width_scale = new_width / width height_scale = new_height / height scale = min(width_scale, height_scale) # Resize resized = img.resize((int(width*scale), int(height*scale)), Image.NEAREST) # Crop to exact size resized = resized.crop((0, 0, new_width, new_height)) return resized def inference(input_img, transparency=0.5, target_layer_number=-1, grad_cam_option="Yes",top_classes=3): input_img = resize_image_pil(input_img, 32, 32) input_img = np.array(input_img) org_img = input_img input_img = input_img.reshape((32, 32, 3)) transform = transforms.ToTensor() input_img = transform(input_img) input_img = input_img.unsqueeze(0) outputs = model(input_img) softmax = torch.nn.Softmax(dim=0) o = softmax(outputs.flatten()) confidences = {classes[i]: float(o[i]) for i in range(10)} confidences = dict(list(confidences.items())[:top_classes]) _, prediction = torch.max(outputs, 1) target_layers = [model.layer2[target_layer_number]] cam = GradCAM(model=model, target_layers=target_layers) grayscale_cam = cam(input_tensor=input_img, targets=None) grayscale_cam = grayscale_cam[0, :] img = input_img.squeeze(0) img = inv_normalize(img) print('Confidences ',confidences) if grad_cam_option == "Yes": visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency) return classes[prediction[0].item()], visualization, confidences else: return classes[prediction[0].item()], None, confidences title = "CIFAR10 trained on ResNet18 Model with GradCAM" description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results" examples = [["cat.jpg", 0.5, -1], ["dog.jpg", 0.5, -1], ["bird_1.jpg", 0.5, -1], ["cat_1.jpg", 0.5, -1], ["cat_2.jpg", 0.5, -1], ["dog_1.jpg", 0.5, -1], ["dog_2.jpg", 0.5, -1], ["dog_3.jpg", 0.5, -1], ["ship_1.jpg", 0.5, -1], ["ship_2.jpg", 0.5, -1]] demo = gr.Interface( inference, inputs=[ gr.Image(width=256, height=256, label="Input Image"), gr.Slider(0, 1, value=0.5, label="Overall Opacity of Image"), gr.Slider(-2, -1, value=-2, step=1, label="Which Layer?"), gr.Dropdown(["Yes", "No"], label="Want to see Grad Cam Images?"), gr.Number(value=3, minimum=1,maximum=10) ], outputs=[ "text", gr.Image(width=256, height=256, label="Output"), gr.Label() ], title=title, description=description, examples=examples, ) demo.launch()