""" ResNet in PyTorch. For Pre-activation ResNet, see 'preact_resnet.py'. Reference: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 """ import torch.nn as nn import torch.nn.functional as F # imports import os import torch from pytorch_lightning import LightningModule, Trainer from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader, random_split from torchmetrics import Accuracy from torchvision import transforms from torchvision.datasets import CIFAR10 # from pytorch_lightning.callbacks import ModelSummary # from lightning.pytorch.callbacks import ModelCheckpoint from pytorch_lightning.callbacks import ModelCheckpoint, ModelSummary import torchvision.transforms as transforms PATH_DATASETS = os.environ.get("PATH_DATASETS", ".") AVAIL_GPUS = min(1, torch.cuda.device_count()) BATCH_SIZE = 256 if AVAIL_GPUS else 64 class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class CIFAR10Model(LightningModule): def __init__(self, block, num_blocks, num_classes=10, data_dir=PATH_DATASETS, learning_rate=0.01): super(CIFAR10Model, self).__init__() self.in_planes = 64 # Define transformations using Albumentations normalize = transforms.Normalize(mean=(0.4914, 0.4822, 0.4465), std=(0.2470, 0.2434, 0.2615)) random_crop = transforms.RandomCrop((32, 32)) horizontal_flip = transforms.RandomHorizontalFlip() to_tensor = transforms.ToTensor() self.transform = transforms.Compose([ random_crop, horizontal_flip, to_tensor, normalize ]) self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512 * block.expansion, num_classes) self.accuracy = Accuracy(task="MULTICLASS", num_classes=10) self.data_dir = data_dir self.learning_rate = learning_rate def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def training_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.cross_entropy(logits, y) return loss def validation_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.cross_entropy(logits, y) preds = torch.argmax(logits, dim=1) self.accuracy(preds, y) self.log("val_loss", loss, prog_bar=True) self.log("val_acc", self.accuracy, prog_bar=True) return loss def test_step(self, batch, batch_idx): return self.validation_step(batch, batch_idx) def configure_optimizers(self): optimizer = torch.optim.SGD(self.parameters(), lr=self.learning_rate) return optimizer def prepare_data(self): CIFAR10(self.data_dir, train=True, download=True) CIFAR10(self.data_dir, train=False, download=True) def setup(self, stage=None): if stage == "fit" or stage is None: cifar10_full = CIFAR10(self.data_dir, train=True, transform=self.transform) train_size = int(len(cifar10_full) * 0.9) val_size = len(cifar10_full) - train_size self.cifar10_train, self.cifar10_val = random_split(cifar10_full, [train_size, val_size]) if stage == "test" or stage is None: self.cifar10_test = CIFAR10(self.data_dir, train=False, transform=self.transform) def train_dataloader(self): return DataLoader(self.cifar10_train, batch_size=BATCH_SIZE, num_workers=os.cpu_count()) def val_dataloader(self): return DataLoader(self.cifar10_val, batch_size=BATCH_SIZE, num_workers=os.cpu_count(), persistent_workers=True) def test_dataloader(self): return DataLoader(self.cifar10_test, batch_size=BATCH_SIZE, num_workers=os.cpu_count()) def ResNet18(): return CIFAR10Model(BasicBlock, [2, 2, 2, 2]) def ResNet34(): return ResNet(BasicBlock, [3, 4, 6, 3])