File size: 4,856 Bytes
58629f0 c7e44c9 bd0b4a3 c7e44c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
# Copyright 2023 Dmitry Ustalov
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__author__ = 'Dmitry Ustalov'
__license__ = 'Apache 2.0'
import typing
import gradio as gr
import numpy as np
import numpy.typing as npt
import pandas as pd
# https://gist.github.com/dustalov/41678b70c40ba5a55430fa5e77b121d9#file-newman-py
def aggregate(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64], tolerance: float = 10e-6, limit: int = 20) \
-> npt.ArrayLike:
assert wins.shape == ties.shape, 'wins and ties shapes are different'
pi, v = np.random.rand(wins.shape[0]), np.random.rand()
converged, iterations = False, 0
while not converged:
iterations += 1
v_numerator = np.sum(
ties * (pi[:, None] + pi) / (pi[:, None] + pi + 2 * v * np.sqrt(pi[:, None] * pi))
) / 2
v_denominator = np.sum(
wins * 2 * np.sqrt(pi[:, None] * pi) / (pi[:, None] + pi + 2 * v * np.sqrt(pi[:, None] * pi))
)
v = v_numerator / v_denominator
pi_old = pi.copy()
pi_numerator = np.sum(
(wins + ties / 2) * (pi + v * np.sqrt(pi[:, np.newaxis] * pi)) /
(pi[:, np.newaxis] + pi + 2 * np.sqrt(pi[:, np.newaxis] * pi)),
axis=1
)
pi_denominator = np.sum(
(wins + ties / 2) * (1 + v * np.sqrt(pi[:, np.newaxis] * pi)) /
(pi[:, np.newaxis] + pi + 2 * np.sqrt(pi[:, np.newaxis] * pi)),
axis=0
)
pi = pi_numerator / pi_denominator
converged = bool(np.all(np.abs(pi / (pi + 1) - pi_old / (pi_old + 1)) < tolerance)) or (iterations >= limit)
return pi
def handler(file: typing.IO[bytes]) -> pd.DataFrame:
try:
df = pd.read_csv(file.name, dtype=str)
except ValueError as e:
raise gr.Error(f'Parsing error: {e}')
if not pd.Series(['left', 'right', 'winner']).isin(df.columns).all():
raise gr.Error('Columns must exist: left, right, winner')
if not df['winner'].isin(pd.Series(['left', 'right', 'tie'])).all():
raise gr.Error('Allowed winner values: left, right, tie')
df = df[['left', 'right', 'winner']]
df.dropna(axis='rows', inplace=True)
index = pd.Index(np.unique(df[['left', 'right']].values), name='item')
df_wins = pd.pivot_table(df[df['winner'].isin(['left', 'right'])],
index='left', columns='right', values='winner',
aggfunc='count', fill_value=0)
df_wins = df_wins.reindex(labels=index, columns=index, fill_value=0)
df_ties = pd.pivot_table(df[df['winner'] == 'tie'],
index='left', columns='right', values='winner', aggfunc='count',
fill_value=0)
df_ties = df_ties.reindex(labels=index, columns=index, fill_value=0)
wins = df_wins.to_numpy(dtype=np.int64)
ties = df_ties.to_numpy(dtype=np.int64)
ties += ties.T
scores = aggregate(wins, ties)
df_result = pd.DataFrame(data={'score': scores}, index=index)
df_result['rank'] = df_result['score'].rank(ascending=False).astype(int)
df_result.sort_values(by=['rank', 'score'], ascending=[True, False], inplace=True)
df_result.reset_index(inplace=True)
return df_result
iface = gr.Interface(
fn=handler,
inputs=gr.File(
value='example.csv',
file_types=['.tsv', '.csv']
),
outputs=gr.Dataframe(
headers=['item', 'score', 'rank']
),
title='Turn Your Side-by-Side Comparisons into Ranking!',
description='''
This easy-to-use tool transforms pairwise comparisons (aka side-by-side) to a meaningful ranking of items.
As an input, it expects a comma-separated (CSV) file containing the following columns:
- `left`: the first compared item
- `right`: the second compared item
- `winner`: the label indicating the winning item
Possible values for `winner` are `left`, `right`, or `tie`.
The provided example might be a good starting point of the format.
As the output, this tool provides a table with items, their estimated scores, and ranks.
''',
article='''
This tool implements the tie-aware ranking aggregation algorithm as described in
[Efficient Computation of Rankings from Pairwise Comparisons](https://www.jmlr.org/papers/v24/22-1086.html).
''',
allow_flagging='never'
)
iface.launch()
|