Compute CIs
Browse files- README.md +3 -3
- app.py +96 -32
- requirements.txt +1 -1
README.md
CHANGED
@@ -1,17 +1,17 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: π
|
4 |
colorFrom: green
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
python_version: 3.11
|
8 |
-
sdk_version: 5.
|
9 |
app_file: app.py
|
10 |
pinned: true
|
11 |
license: apache-2.0
|
12 |
---
|
13 |
|
14 |
-
#
|
15 |
|
16 |
[Evalica](https://github.com/dustalov/evalica) is a library for pairwise comparisons as described in paper
|
17 |
Reliable, Reproducible, and Really Fast Leaderboards with Evalica
|
|
|
1 |
---
|
2 |
+
title: Evalica
|
3 |
emoji: π
|
4 |
colorFrom: green
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
python_version: 3.11
|
8 |
+
sdk_version: 5.12.0
|
9 |
app_file: app.py
|
10 |
pinned: true
|
11 |
license: apache-2.0
|
12 |
---
|
13 |
|
14 |
+
# Evalica
|
15 |
|
16 |
[Evalica](https://github.com/dustalov/evalica) is a library for pairwise comparisons as described in paper
|
17 |
Reliable, Reproducible, and Really Fast Leaderboards with Evalica
|
app.py
CHANGED
@@ -17,6 +17,7 @@
|
|
17 |
__author__ = "Dmitry Ustalov"
|
18 |
__license__ = "Apache 2.0"
|
19 |
|
|
|
20 |
from typing import BinaryIO, cast
|
21 |
|
22 |
import evalica
|
@@ -42,45 +43,45 @@ def visualize(df_pairwise: pd.DataFrame) -> Figure:
|
|
42 |
|
43 |
|
44 |
def counting(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
45 |
-
ws: "pd.Series[Winner]") ->
|
46 |
-
result = evalica.counting(xs, ys, ws)
|
47 |
-
return result.scores
|
48 |
|
49 |
|
50 |
def average_win_rate(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
51 |
-
ws: "pd.Series[Winner]") ->
|
52 |
-
result = evalica.counting(xs, ys, ws)
|
53 |
-
return result.scores
|
54 |
|
55 |
|
56 |
def bradley_terry(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
57 |
-
ws: "pd.Series[Winner]") ->
|
58 |
-
result = evalica.bradley_terry(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
59 |
-
return result.scores
|
60 |
|
61 |
|
62 |
def elo(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
63 |
-
ws: "pd.Series[Winner]") ->
|
64 |
-
result = evalica.elo(xs, ys, ws)
|
65 |
-
return result.scores
|
66 |
|
67 |
|
68 |
def eigen(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
69 |
-
ws: "pd.Series[Winner]") ->
|
70 |
-
result = evalica.eigen(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
71 |
-
return result.scores
|
72 |
|
73 |
|
74 |
def pagerank(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
75 |
-
ws: "pd.Series[Winner]") ->
|
76 |
-
result = evalica.pagerank(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
77 |
-
return result.scores
|
78 |
|
79 |
|
80 |
def newman(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
81 |
-
ws: "pd.Series[Winner]") ->
|
82 |
-
result = evalica.newman(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
83 |
-
return result.scores
|
84 |
|
85 |
|
86 |
ALGORITHMS = {
|
@@ -103,11 +104,56 @@ def largest_strongly_connected_component(df_pairs: pd.DataFrame) -> set[str]:
|
|
103 |
return cast(set[str], largest)
|
104 |
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
def handler(
|
107 |
file: BinaryIO,
|
108 |
algorithm: str,
|
109 |
filtered: bool,
|
110 |
truncated: bool,
|
|
|
111 |
) -> tuple[pd.DataFrame, Figure]:
|
112 |
if file is None:
|
113 |
raise gr.Error("File must be uploaded")
|
@@ -127,6 +173,9 @@ def handler(
|
|
127 |
raise gr.Error("Allowed winner values: left, right, tie")
|
128 |
|
129 |
df_pairs = df_pairs[["left", "right", "winner"]]
|
|
|
|
|
|
|
130 |
|
131 |
df_pairs = df_pairs.dropna(axis=0)
|
132 |
|
@@ -135,13 +184,12 @@ def handler(
|
|
135 |
|
136 |
df_pairs = df_pairs.drop(df_pairs[~(df_pairs["left"].isin(largest) & df_pairs["right"].isin(largest))].index)
|
137 |
|
138 |
-
|
139 |
-
ws = df_pairs["winner"].map({"left": Winner.X, "right": Winner.Y, "tie": Winner.Draw})
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
|
146 |
df_result["pairs"] = pd.Series(0, dtype=int, index=index).add(
|
147 |
df_pairs.groupby("left")["left"].count(), fill_value=0,
|
@@ -165,6 +213,14 @@ def handler(
|
|
165 |
|
166 |
fig = visualize(df_pairwise)
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
return df_result, fig
|
169 |
|
170 |
|
@@ -195,10 +251,17 @@ def main() -> None:
|
|
195 |
info="Perform the entire computation but output only five head and five tail items, "
|
196 |
"avoiding overlap.",
|
197 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
],
|
199 |
outputs=[
|
200 |
gr.Dataframe(
|
201 |
-
headers=["item", "score", "pairs", "rank"],
|
202 |
label="Ranking",
|
203 |
),
|
204 |
gr.Plot(
|
@@ -215,9 +278,11 @@ def main() -> None:
|
|
215 |
["llmfao.csv", "Bradley-Terry (1952)", False, True],
|
216 |
["llmfao.csv", "Elo (1960)", False, True],
|
217 |
],
|
218 |
-
title="
|
219 |
description="""
|
220 |
-
|
|
|
|
|
221 |
|
222 |
As an input, it expects a comma-separated (CSV) file with a header containing the following columns:
|
223 |
|
@@ -228,8 +293,7 @@ As an input, it expects a comma-separated (CSV) file with a header containing th
|
|
228 |
Possible values for `winner` are `left`, `right`, or `tie`. The provided examples might be a good starting point.
|
229 |
|
230 |
As the output, this tool provides a table with items, their estimated scores, and ranks.
|
231 |
-
|
232 |
-
article="""
|
233 |
**More Evalica:**
|
234 |
|
235 |
- Paper: TBD ([arXiv](https://arxiv.org/abs/2412.11314))
|
|
|
17 |
__author__ = "Dmitry Ustalov"
|
18 |
__license__ = "Apache 2.0"
|
19 |
|
20 |
+
from collections.abc import Callable
|
21 |
from typing import BinaryIO, cast
|
22 |
|
23 |
import evalica
|
|
|
43 |
|
44 |
|
45 |
def counting(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
46 |
+
ws: "pd.Series[Winner]", index: dict[str, int]) -> "pd.Series[float]": # type: ignore[type-var]
|
47 |
+
result = evalica.counting(xs, ys, ws, index=index)
|
48 |
+
return result.scores
|
49 |
|
50 |
|
51 |
def average_win_rate(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
52 |
+
ws: "pd.Series[Winner]", index: dict[str, int]) -> "pd.Series[float]": # type: ignore[type-var]
|
53 |
+
result = evalica.counting(xs, ys, ws, index=index)
|
54 |
+
return result.scores
|
55 |
|
56 |
|
57 |
def bradley_terry(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
58 |
+
ws: "pd.Series[Winner]", index: dict[str, int]) -> "pd.Series[float]": # type: ignore[type-var]
|
59 |
+
result = evalica.bradley_terry(xs, ys, ws, index=index, tolerance=TOLERANCE, limit=LIMIT)
|
60 |
+
return result.scores
|
61 |
|
62 |
|
63 |
def elo(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
64 |
+
ws: "pd.Series[Winner]", index: dict[str, int]) -> "pd.Series[float]": # type: ignore[type-var]
|
65 |
+
result = evalica.elo(xs, ys, ws, index=index)
|
66 |
+
return result.scores
|
67 |
|
68 |
|
69 |
def eigen(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
70 |
+
ws: "pd.Series[Winner]", index: dict[str, int]) -> "pd.Series[float]": # type: ignore[type-var]
|
71 |
+
result = evalica.eigen(xs, ys, ws, index=index, tolerance=TOLERANCE, limit=LIMIT)
|
72 |
+
return result.scores
|
73 |
|
74 |
|
75 |
def pagerank(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
76 |
+
ws: "pd.Series[Winner]", index: dict[str, int]) -> "pd.Series[float]": # type: ignore[type-var]
|
77 |
+
result = evalica.pagerank(xs, ys, ws, index=index, tolerance=TOLERANCE, limit=LIMIT)
|
78 |
+
return result.scores
|
79 |
|
80 |
|
81 |
def newman(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
82 |
+
ws: "pd.Series[Winner]", index: dict[str, int]) -> "pd.Series[float]": # type: ignore[type-var]
|
83 |
+
result = evalica.newman(xs, ys, ws, index=index, tolerance=TOLERANCE, limit=LIMIT)
|
84 |
+
return result.scores
|
85 |
|
86 |
|
87 |
ALGORITHMS = {
|
|
|
104 |
return cast(set[str], largest)
|
105 |
|
106 |
|
107 |
+
def estimate(df_pairs: pd.DataFrame,
|
108 |
+
algorithm: Callable[[ # type: ignore[type-var]
|
109 |
+
"pd.Series[str]", "pd.Series[str]", "pd.Series[Winner]", dict[str, int]],
|
110 |
+
"pd.Series[float]",
|
111 |
+
],
|
112 |
+
index: dict[str, int]) -> pd.DataFrame:
|
113 |
+
scores = algorithm(df_pairs["left"], df_pairs["right"], df_pairs["winner"], index)
|
114 |
+
|
115 |
+
df_result = pd.DataFrame(data={"score": scores}, index=index)
|
116 |
+
df_result.index.name = "item"
|
117 |
+
|
118 |
+
return df_result
|
119 |
+
|
120 |
+
|
121 |
+
def bootstrap(df_pairs: pd.DataFrame,
|
122 |
+
algorithm: Callable[[ # type: ignore[type-var]
|
123 |
+
"pd.Series[str]", "pd.Series[str]", "pd.Series[Winner]", dict[str, int]],
|
124 |
+
"pd.Series[float]",
|
125 |
+
],
|
126 |
+
index: dict[str, int],
|
127 |
+
rounds: int) -> pd.DataFrame:
|
128 |
+
scores: list[pd.Series[float]] = [] # assuming model names are strings
|
129 |
+
|
130 |
+
for r in range(rounds):
|
131 |
+
df_sample = df_pairs.sample(frac=1.0, replace=True, random_state=r)
|
132 |
+
|
133 |
+
sample_scores = algorithm(df_sample["left"], df_sample["right"], df_sample["winner"], index)
|
134 |
+
|
135 |
+
scores.append(sample_scores)
|
136 |
+
|
137 |
+
df_bootstrap = pd.DataFrame(scores, columns=index)
|
138 |
+
|
139 |
+
ratings = df_bootstrap.quantile(.5)
|
140 |
+
|
141 |
+
ci = df_bootstrap.apply(lambda row: (
|
142 |
+
row.quantile(.025).item(), row.quantile(.975).item(),
|
143 |
+
), axis=0, result_type="reduce")
|
144 |
+
|
145 |
+
df_result = pd.DataFrame({"score": ratings, "ci": ci})
|
146 |
+
df_result.index.name = "item"
|
147 |
+
|
148 |
+
return df_result
|
149 |
+
|
150 |
+
|
151 |
def handler(
|
152 |
file: BinaryIO,
|
153 |
algorithm: str,
|
154 |
filtered: bool,
|
155 |
truncated: bool,
|
156 |
+
rounds: int,
|
157 |
) -> tuple[pd.DataFrame, Figure]:
|
158 |
if file is None:
|
159 |
raise gr.Error("File must be uploaded")
|
|
|
173 |
raise gr.Error("Allowed winner values: left, right, tie")
|
174 |
|
175 |
df_pairs = df_pairs[["left", "right", "winner"]]
|
176 |
+
df_pairs["winner"] = df_pairs["winner"].map(
|
177 |
+
{"left": Winner.X, "right": Winner.Y, "tie": Winner.Draw},
|
178 |
+
)
|
179 |
|
180 |
df_pairs = df_pairs.dropna(axis=0)
|
181 |
|
|
|
184 |
|
185 |
df_pairs = df_pairs.drop(df_pairs[~(df_pairs["left"].isin(largest) & df_pairs["right"].isin(largest))].index)
|
186 |
|
187 |
+
*_, index = evalica.indexing(xs=df_pairs["left"], ys=df_pairs["right"])
|
|
|
188 |
|
189 |
+
if rounds:
|
190 |
+
df_result = bootstrap(df_pairs, ALGORITHMS[algorithm], index, rounds)
|
191 |
+
else:
|
192 |
+
df_result = estimate(df_pairs, ALGORITHMS[algorithm], index)
|
193 |
|
194 |
df_result["pairs"] = pd.Series(0, dtype=int, index=index).add(
|
195 |
df_pairs.groupby("left")["left"].count(), fill_value=0,
|
|
|
213 |
|
214 |
fig = visualize(df_pairwise)
|
215 |
|
216 |
+
df_result["score"] = df_result["score"].apply(lambda x: f"{x:.03f}")
|
217 |
+
|
218 |
+
if "ci" in df_result.columns:
|
219 |
+
df_result["ci"] = df_result.apply(
|
220 |
+
lambda row: f"({row['score'] - row['ci'][0]:.03f}; {row['ci'][1] - row['score']:.03f})",
|
221 |
+
axis=1,
|
222 |
+
)
|
223 |
+
|
224 |
return df_result, fig
|
225 |
|
226 |
|
|
|
251 |
info="Perform the entire computation but output only five head and five tail items, "
|
252 |
"avoiding overlap.",
|
253 |
),
|
254 |
+
gr.Number(
|
255 |
+
value=0,
|
256 |
+
minimum=0,
|
257 |
+
maximum=10000,
|
258 |
+
label="Bootstrap Rounds",
|
259 |
+
info="Number of bootstrap rounds to perform for estimating the confidence interval.",
|
260 |
+
),
|
261 |
],
|
262 |
outputs=[
|
263 |
gr.Dataframe(
|
264 |
+
headers=["item", "score", "ci", "pairs", "rank"],
|
265 |
label="Ranking",
|
266 |
),
|
267 |
gr.Plot(
|
|
|
278 |
["llmfao.csv", "Bradley-Terry (1952)", False, True],
|
279 |
["llmfao.csv", "Elo (1960)", False, True],
|
280 |
],
|
281 |
+
title="Evalica: Turn Your Side-by-Side Comparisons into Ranking!",
|
282 |
description="""
|
283 |
+
""".strip(),
|
284 |
+
article="""
|
285 |
+
This easy-to-use tool transforms pairwise comparisons (*aka* side-by-side) to a meaningful ranking of items.
|
286 |
|
287 |
As an input, it expects a comma-separated (CSV) file with a header containing the following columns:
|
288 |
|
|
|
293 |
Possible values for `winner` are `left`, `right`, or `tie`. The provided examples might be a good starting point.
|
294 |
|
295 |
As the output, this tool provides a table with items, their estimated scores, and ranks.
|
296 |
+
|
|
|
297 |
**More Evalica:**
|
298 |
|
299 |
- Paper: TBD ([arXiv](https://arxiv.org/abs/2412.11314))
|
requirements.txt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
-
evalica
|
2 |
networkx
|
3 |
plotly
|
|
|
1 |
+
evalica[gradio]
|
2 |
networkx
|
3 |
plotly
|