dustalov commited on
Commit
83143d1
1 Parent(s): c003bbb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -14
app.py CHANGED
@@ -37,8 +37,8 @@ def visualize(df_pairwise: pd.DataFrame) -> Figure:
37
 
38
 
39
  # https://gist.github.com/dustalov/41678b70c40ba5a55430fa5e77b121d9#file-bradley_terry-py
40
- def bradley_terry(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
41
- seed: int = 0, tolerance: float = 10e-6, limit: int = 20) -> npt.NDArray[np.float64]:
42
  M = wins + .5 * ties
43
 
44
  T = M.T + M
@@ -72,7 +72,7 @@ def bradley_terry(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
72
 
73
 
74
  def centrality(algorithm: Callable[[nx.DiGraph], Dict[int, float]],
75
- wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64]) -> npt.NDArray[np.float64]:
76
  A = wins + .5 * ties
77
 
78
  G = nx.from_numpy_array(A, create_using=nx.DiGraph)
@@ -84,30 +84,30 @@ def centrality(algorithm: Callable[[nx.DiGraph], Dict[int, float]],
84
  return p
85
 
86
 
87
- def counting(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
88
- seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.float64]:
89
  M = wins + .5 * ties
90
 
91
- return cast(npt.NDArray[np.float64], M.sum(axis=1))
92
 
93
 
94
- def eigen(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
95
- seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.float64]:
96
  algorithm = partial(nx.algorithms.eigenvector_centrality_numpy, max_iter=limit, tol=tolerance)
97
 
98
  return centrality(algorithm, wins, ties)
99
 
100
 
101
- def pagerank(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
102
- seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.float64]:
103
  algorithm = partial(nx.algorithms.pagerank, max_iter=limit, tol=tolerance)
104
 
105
  return centrality(algorithm, wins, ties)
106
 
107
 
108
  # https://gist.github.com/dustalov/41678b70c40ba5a55430fa5e77b121d9#file-newman-py
109
- def newman(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
110
- seed: int = 0, tolerance: float = 10e-6, limit: int = 20) -> npt.NDArray[np.float64]:
111
  rng = np.random.default_rng(seed)
112
 
113
  pi, v = rng.random(wins.shape[0]), rng.random()
@@ -214,8 +214,8 @@ def handler(file: IO[bytes], algorithm: str, filtered: bool, truncated: bool, se
214
  aggfunc='count', fill_value=0)
215
  df_ties = df_ties.reindex(labels=index, columns=index, fill_value=0, copy=False)
216
 
217
- wins = df_wins.to_numpy(dtype=np.int64)
218
- ties = df_ties.to_numpy(dtype=np.int64)
219
  ties += ties.T
220
 
221
  assert wins.shape == ties.shape, 'wins and ties shapes are different'
 
37
 
38
 
39
  # https://gist.github.com/dustalov/41678b70c40ba5a55430fa5e77b121d9#file-bradley_terry-py
40
+ def bradley_terry(wins: npt.NDArray[np.int_], ties: npt.NDArray[np.int_],
41
+ seed: int = 0, tolerance: float = 10e-6, limit: int = 20) -> npt.NDArray[np.float_]:
42
  M = wins + .5 * ties
43
 
44
  T = M.T + M
 
72
 
73
 
74
  def centrality(algorithm: Callable[[nx.DiGraph], Dict[int, float]],
75
+ wins: npt.NDArray[np.int_], ties: npt.NDArray[np.int_]) -> npt.NDArray[np.float_]:
76
  A = wins + .5 * ties
77
 
78
  G = nx.from_numpy_array(A, create_using=nx.DiGraph)
 
84
  return p
85
 
86
 
87
+ def counting(wins: npt.NDArray[np.int_], ties: npt.NDArray[np.int_],
88
+ seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.float_]:
89
  M = wins + .5 * ties
90
 
91
+ return cast(npt.NDArray[np.float_], M.sum(axis=1))
92
 
93
 
94
+ def eigen(wins: npt.NDArray[np.int_], ties: npt.NDArray[np.int_],
95
+ seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.float_]:
96
  algorithm = partial(nx.algorithms.eigenvector_centrality_numpy, max_iter=limit, tol=tolerance)
97
 
98
  return centrality(algorithm, wins, ties)
99
 
100
 
101
+ def pagerank(wins: npt.NDArray[np.int_], ties: npt.NDArray[np.int_],
102
+ seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.float_]:
103
  algorithm = partial(nx.algorithms.pagerank, max_iter=limit, tol=tolerance)
104
 
105
  return centrality(algorithm, wins, ties)
106
 
107
 
108
  # https://gist.github.com/dustalov/41678b70c40ba5a55430fa5e77b121d9#file-newman-py
109
+ def newman(wins: npt.NDArray[np.int_], ties: npt.NDArray[np.int_],
110
+ seed: int = 0, tolerance: float = 10e-6, limit: int = 20) -> npt.NDArray[np.float_]:
111
  rng = np.random.default_rng(seed)
112
 
113
  pi, v = rng.random(wins.shape[0]), rng.random()
 
214
  aggfunc='count', fill_value=0)
215
  df_ties = df_ties.reindex(labels=index, columns=index, fill_value=0, copy=False)
216
 
217
+ wins = df_wins.to_numpy(dtype=int)
218
+ ties = df_ties.to_numpy(dtype=int)
219
  ties += ties.T
220
 
221
  assert wins.shape == ties.shape, 'wins and ties shapes are different'