Update app.py
Browse files
app.py
CHANGED
@@ -37,8 +37,8 @@ def visualize(df_pairwise: pd.DataFrame) -> Figure:
|
|
37 |
|
38 |
|
39 |
# https://gist.github.com/dustalov/41678b70c40ba5a55430fa5e77b121d9#file-bradley_terry-py
|
40 |
-
def bradley_terry(wins: npt.NDArray[np.
|
41 |
-
seed: int = 0, tolerance: float = 10e-6, limit: int = 20) -> npt.NDArray[np.
|
42 |
M = wins + .5 * ties
|
43 |
|
44 |
T = M.T + M
|
@@ -72,7 +72,7 @@ def bradley_terry(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
|
|
72 |
|
73 |
|
74 |
def centrality(algorithm: Callable[[nx.DiGraph], Dict[int, float]],
|
75 |
-
wins: npt.NDArray[np.
|
76 |
A = wins + .5 * ties
|
77 |
|
78 |
G = nx.from_numpy_array(A, create_using=nx.DiGraph)
|
@@ -84,30 +84,30 @@ def centrality(algorithm: Callable[[nx.DiGraph], Dict[int, float]],
|
|
84 |
return p
|
85 |
|
86 |
|
87 |
-
def counting(wins: npt.NDArray[np.
|
88 |
-
seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.
|
89 |
M = wins + .5 * ties
|
90 |
|
91 |
-
return cast(npt.NDArray[np.
|
92 |
|
93 |
|
94 |
-
def eigen(wins: npt.NDArray[np.
|
95 |
-
seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.
|
96 |
algorithm = partial(nx.algorithms.eigenvector_centrality_numpy, max_iter=limit, tol=tolerance)
|
97 |
|
98 |
return centrality(algorithm, wins, ties)
|
99 |
|
100 |
|
101 |
-
def pagerank(wins: npt.NDArray[np.
|
102 |
-
seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.
|
103 |
algorithm = partial(nx.algorithms.pagerank, max_iter=limit, tol=tolerance)
|
104 |
|
105 |
return centrality(algorithm, wins, ties)
|
106 |
|
107 |
|
108 |
# https://gist.github.com/dustalov/41678b70c40ba5a55430fa5e77b121d9#file-newman-py
|
109 |
-
def newman(wins: npt.NDArray[np.
|
110 |
-
seed: int = 0, tolerance: float = 10e-6, limit: int = 20) -> npt.NDArray[np.
|
111 |
rng = np.random.default_rng(seed)
|
112 |
|
113 |
pi, v = rng.random(wins.shape[0]), rng.random()
|
@@ -214,8 +214,8 @@ def handler(file: IO[bytes], algorithm: str, filtered: bool, truncated: bool, se
|
|
214 |
aggfunc='count', fill_value=0)
|
215 |
df_ties = df_ties.reindex(labels=index, columns=index, fill_value=0, copy=False)
|
216 |
|
217 |
-
wins = df_wins.to_numpy(dtype=
|
218 |
-
ties = df_ties.to_numpy(dtype=
|
219 |
ties += ties.T
|
220 |
|
221 |
assert wins.shape == ties.shape, 'wins and ties shapes are different'
|
|
|
37 |
|
38 |
|
39 |
# https://gist.github.com/dustalov/41678b70c40ba5a55430fa5e77b121d9#file-bradley_terry-py
|
40 |
+
def bradley_terry(wins: npt.NDArray[np.int_], ties: npt.NDArray[np.int_],
|
41 |
+
seed: int = 0, tolerance: float = 10e-6, limit: int = 20) -> npt.NDArray[np.float_]:
|
42 |
M = wins + .5 * ties
|
43 |
|
44 |
T = M.T + M
|
|
|
72 |
|
73 |
|
74 |
def centrality(algorithm: Callable[[nx.DiGraph], Dict[int, float]],
|
75 |
+
wins: npt.NDArray[np.int_], ties: npt.NDArray[np.int_]) -> npt.NDArray[np.float_]:
|
76 |
A = wins + .5 * ties
|
77 |
|
78 |
G = nx.from_numpy_array(A, create_using=nx.DiGraph)
|
|
|
84 |
return p
|
85 |
|
86 |
|
87 |
+
def counting(wins: npt.NDArray[np.int_], ties: npt.NDArray[np.int_],
|
88 |
+
seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.float_]:
|
89 |
M = wins + .5 * ties
|
90 |
|
91 |
+
return cast(npt.NDArray[np.float_], M.sum(axis=1))
|
92 |
|
93 |
|
94 |
+
def eigen(wins: npt.NDArray[np.int_], ties: npt.NDArray[np.int_],
|
95 |
+
seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.float_]:
|
96 |
algorithm = partial(nx.algorithms.eigenvector_centrality_numpy, max_iter=limit, tol=tolerance)
|
97 |
|
98 |
return centrality(algorithm, wins, ties)
|
99 |
|
100 |
|
101 |
+
def pagerank(wins: npt.NDArray[np.int_], ties: npt.NDArray[np.int_],
|
102 |
+
seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.float_]:
|
103 |
algorithm = partial(nx.algorithms.pagerank, max_iter=limit, tol=tolerance)
|
104 |
|
105 |
return centrality(algorithm, wins, ties)
|
106 |
|
107 |
|
108 |
# https://gist.github.com/dustalov/41678b70c40ba5a55430fa5e77b121d9#file-newman-py
|
109 |
+
def newman(wins: npt.NDArray[np.int_], ties: npt.NDArray[np.int_],
|
110 |
+
seed: int = 0, tolerance: float = 10e-6, limit: int = 20) -> npt.NDArray[np.float_]:
|
111 |
rng = np.random.default_rng(seed)
|
112 |
|
113 |
pi, v = rng.random(wins.shape[0]), rng.random()
|
|
|
214 |
aggfunc='count', fill_value=0)
|
215 |
df_ties = df_ties.reindex(labels=index, columns=index, fill_value=0, copy=False)
|
216 |
|
217 |
+
wins = df_wins.to_numpy(dtype=int)
|
218 |
+
ties = df_ties.to_numpy(dtype=int)
|
219 |
ties += ties.T
|
220 |
|
221 |
assert wins.shape == ties.shape, 'wins and ties shapes are different'
|