Fix typing and linting
Browse files
app.py
CHANGED
@@ -41,32 +41,38 @@ def visualize(df_pairwise: pd.DataFrame) -> Figure:
|
|
41 |
return fig
|
42 |
|
43 |
|
44 |
-
def counting(xs:
|
|
|
45 |
result = evalica.counting(xs, ys, ws)
|
46 |
return result.scores, result.index
|
47 |
|
48 |
|
49 |
-
def bradley_terry(xs:
|
|
|
50 |
result = evalica.bradley_terry(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
51 |
return result.scores, result.index
|
52 |
|
53 |
|
54 |
-
def elo(xs:
|
|
|
55 |
result = evalica.elo(xs, ys, ws)
|
56 |
return result.scores, result.index
|
57 |
|
58 |
|
59 |
-
def eigen(xs:
|
|
|
60 |
result = evalica.eigen(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
61 |
return result.scores, result.index
|
62 |
|
63 |
|
64 |
-
def pagerank(xs:
|
|
|
65 |
result = evalica.pagerank(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
66 |
return result.scores, result.index
|
67 |
|
68 |
|
69 |
-
def newman(xs:
|
|
|
70 |
result = evalica.newman(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
71 |
return result.scores, result.index
|
72 |
|
@@ -115,12 +121,12 @@ def handler(
|
|
115 |
|
116 |
df_pairs = df_pairs[["left", "right", "winner"]]
|
117 |
|
118 |
-
df_pairs.dropna(axis=0
|
119 |
|
120 |
if filtered:
|
121 |
largest = largest_strongly_connected_component(df_pairs)
|
122 |
|
123 |
-
df_pairs.drop(df_pairs[~(df_pairs["left"].isin(largest) & df_pairs["right"].isin(largest))].index
|
124 |
|
125 |
xs, ys = df_pairs["left"], df_pairs["right"]
|
126 |
ws = df_pairs["winner"].map({"left": Winner.X, "right": Winner.Y, "tie": Winner.Draw})
|
@@ -138,9 +144,9 @@ def handler(
|
|
138 |
|
139 |
df_result["rank"] = df_result["score"].rank(na_option="bottom", ascending=False).astype(int)
|
140 |
|
141 |
-
df_result.fillna(-np.inf
|
142 |
-
df_result.sort_values(by=["rank", "score"], ascending=[True, False]
|
143 |
-
df_result.reset_index(
|
144 |
|
145 |
if truncated:
|
146 |
df_result = pd.concat((df_result.head(5), df_result.tail(5)), copy=False)
|
|
|
41 |
return fig
|
42 |
|
43 |
|
44 |
+
def counting(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
45 |
+
ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", "pd.Index[str]"]: # type: ignore[type-var]
|
46 |
result = evalica.counting(xs, ys, ws)
|
47 |
return result.scores, result.index
|
48 |
|
49 |
|
50 |
+
def bradley_terry(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
51 |
+
ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", "pd.Index[str]"]: # type: ignore[type-var]
|
52 |
result = evalica.bradley_terry(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
53 |
return result.scores, result.index
|
54 |
|
55 |
|
56 |
+
def elo(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
57 |
+
ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", "pd.Index[str]"]: # type: ignore[type-var]
|
58 |
result = evalica.elo(xs, ys, ws)
|
59 |
return result.scores, result.index
|
60 |
|
61 |
|
62 |
+
def eigen(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
63 |
+
ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", "pd.Index[str]"]: # type: ignore[type-var]
|
64 |
result = evalica.eigen(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
65 |
return result.scores, result.index
|
66 |
|
67 |
|
68 |
+
def pagerank(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
69 |
+
ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", "pd.Index[str]"]: # type: ignore[type-var]
|
70 |
result = evalica.pagerank(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
71 |
return result.scores, result.index
|
72 |
|
73 |
|
74 |
+
def newman(xs: "pd.Series[str]", ys: "pd.Series[str]",
|
75 |
+
ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", "pd.Index[str]"]: # type: ignore[type-var]
|
76 |
result = evalica.newman(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
|
77 |
return result.scores, result.index
|
78 |
|
|
|
121 |
|
122 |
df_pairs = df_pairs[["left", "right", "winner"]]
|
123 |
|
124 |
+
df_pairs = df_pairs.dropna(axis=0)
|
125 |
|
126 |
if filtered:
|
127 |
largest = largest_strongly_connected_component(df_pairs)
|
128 |
|
129 |
+
df_pairs = df_pairs.drop(df_pairs[~(df_pairs["left"].isin(largest) & df_pairs["right"].isin(largest))].index)
|
130 |
|
131 |
xs, ys = df_pairs["left"], df_pairs["right"]
|
132 |
ws = df_pairs["winner"].map({"left": Winner.X, "right": Winner.Y, "tie": Winner.Draw})
|
|
|
144 |
|
145 |
df_result["rank"] = df_result["score"].rank(na_option="bottom", ascending=False).astype(int)
|
146 |
|
147 |
+
df_result = df_result.fillna(-np.inf)
|
148 |
+
df_result = df_result.sort_values(by=["rank", "score"], ascending=[True, False])
|
149 |
+
df_result = df_result.reset_index()
|
150 |
|
151 |
if truncated:
|
152 |
df_result = pd.concat((df_result.head(5), df_result.tail(5)), copy=False)
|
ruff.toml
CHANGED
@@ -9,6 +9,5 @@ ignore = [
|
|
9 |
"EM102", # f-string-in-exception
|
10 |
"FBT001", # boolean-type-hint-positional-argument
|
11 |
"N806", # non-lowercase-variable-in-function
|
12 |
-
"PD002", # pandas-use-of-inplace-argument
|
13 |
"TRY003", # raise-vanilla-args
|
14 |
]
|
|
|
9 |
"EM102", # f-string-in-exception
|
10 |
"FBT001", # boolean-type-hint-positional-argument
|
11 |
"N806", # non-lowercase-variable-in-function
|
|
|
12 |
"TRY003", # raise-vanilla-args
|
13 |
]
|