Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,7 @@
|
|
15 |
__author__ = 'Dmitry Ustalov'
|
16 |
__license__ = 'Apache 2.0'
|
17 |
|
18 |
-
from typing import IO, Tuple, List, cast, Dict
|
19 |
|
20 |
import gradio as gr
|
21 |
import networkx as nx
|
@@ -74,11 +74,11 @@ def pagerank(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
|
|
74 |
|
75 |
G = nx.from_numpy_array(A, create_using=nx.DiGraph)
|
76 |
|
77 |
-
|
78 |
|
79 |
-
|
80 |
|
81 |
-
return
|
82 |
|
83 |
|
84 |
# https://gist.github.com/dustalov/41678b70c40ba5a55430fa5e77b121d9#file-newman-py
|
@@ -136,7 +136,15 @@ ALGORITHMS = {
|
|
136 |
}
|
137 |
|
138 |
|
139 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
if file is None:
|
141 |
raise gr.Error('File must be uploaded')
|
142 |
|
@@ -158,7 +166,14 @@ def handler(file: IO[bytes], algorithm: str, seed: int) -> Tuple[pd.DataFrame, F
|
|
158 |
|
159 |
df.dropna(axis='rows', inplace=True)
|
160 |
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
df_wins = pd.pivot_table(df[df['winner'].isin(['left', 'right'])],
|
164 |
index='left', columns='right', values='winner',
|
@@ -179,8 +194,15 @@ def handler(file: IO[bytes], algorithm: str, seed: int) -> Tuple[pd.DataFrame, F
|
|
179 |
scores = ALGORITHMS[algorithm](wins, ties, seed=seed)
|
180 |
|
181 |
df_result = pd.DataFrame(data={'score': scores}, index=index)
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
df_result['rank'] = df_result['score'].rank(na_option='bottom', ascending=False).astype(int)
|
|
|
184 |
df_result.fillna(np.NINF, inplace=True)
|
185 |
df_result.sort_values(by=['rank', 'score'], ascending=[True, False], inplace=True)
|
186 |
df_result.reset_index(inplace=True)
|
@@ -207,6 +229,13 @@ def main() -> None:
|
|
207 |
value='Bradley-Terry (1952)',
|
208 |
label='Algorithm'
|
209 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
gr.Number(
|
211 |
label='Seed',
|
212 |
precision=0
|
@@ -222,9 +251,9 @@ def main() -> None:
|
|
222 |
)
|
223 |
],
|
224 |
examples=[
|
225 |
-
['food.csv', 'Bradley-Terry (1952)',
|
226 |
-
['food.csv', 'PageRank (1998)',
|
227 |
-
['food.csv', 'Newman (2023)',
|
228 |
],
|
229 |
title='Pair2Rank: Turn Your Side-by-Side Comparisons into Ranking!',
|
230 |
description='''
|
@@ -236,8 +265,7 @@ As an input, it expects a comma-separated (CSV) file with a header containing th
|
|
236 |
- `right`: the second compared item
|
237 |
- `winner`: the label indicating the winning item
|
238 |
|
239 |
-
Possible values for `winner` are `left`, `right`, or `tie`.
|
240 |
-
The provided example might be a good starting point.
|
241 |
|
242 |
As the output, this tool provides a table with items, their estimated scores, and ranks.
|
243 |
''',
|
|
|
15 |
__author__ = 'Dmitry Ustalov'
|
16 |
__license__ = 'Apache 2.0'
|
17 |
|
18 |
+
from typing import IO, Tuple, List, cast, Dict, Set
|
19 |
|
20 |
import gradio as gr
|
21 |
import networkx as nx
|
|
|
74 |
|
75 |
G = nx.from_numpy_array(A, create_using=nx.DiGraph)
|
76 |
|
77 |
+
scores: Dict[int, float] = nx.algorithms.pagerank(G, max_iter=limit, tol=tolerance)
|
78 |
|
79 |
+
p = np.array([scores[i] for i in range(len(G))])
|
80 |
|
81 |
+
return p
|
82 |
|
83 |
|
84 |
# https://gist.github.com/dustalov/41678b70c40ba5a55430fa5e77b121d9#file-newman-py
|
|
|
136 |
}
|
137 |
|
138 |
|
139 |
+
def largest_strongly_connected_component(df: pd.DataFrame) -> Set[str]:
|
140 |
+
G = nx.from_pandas_edgelist(df, source='left', target='right', create_using=nx.DiGraph)
|
141 |
+
H = nx.from_pandas_edgelist(df[df['winner'] == 'tie'], source='right', target='left', create_using=nx.DiGraph)
|
142 |
+
F = nx.compose(G, H)
|
143 |
+
largest = max(nx.strongly_connected_components(F), key=len)
|
144 |
+
return cast(Set[str], largest)
|
145 |
+
|
146 |
+
|
147 |
+
def handler(file: IO[bytes], algorithm: str, filtered: bool, seed: int) -> Tuple[pd.DataFrame, Figure]:
|
148 |
if file is None:
|
149 |
raise gr.Error('File must be uploaded')
|
150 |
|
|
|
166 |
|
167 |
df.dropna(axis='rows', inplace=True)
|
168 |
|
169 |
+
if filtered:
|
170 |
+
largest = largest_strongly_connected_component(df)
|
171 |
+
|
172 |
+
df.drop(df[~(df['left'].isin(largest) & df['right'].isin(largest))].index, inplace=True)
|
173 |
+
|
174 |
+
index = pd.Index(largest, name='item')
|
175 |
+
else:
|
176 |
+
index = pd.Index(np.unique(df[['left', 'right']].values), name='item')
|
177 |
|
178 |
df_wins = pd.pivot_table(df[df['winner'].isin(['left', 'right'])],
|
179 |
index='left', columns='right', values='winner',
|
|
|
194 |
scores = ALGORITHMS[algorithm](wins, ties, seed=seed)
|
195 |
|
196 |
df_result = pd.DataFrame(data={'score': scores}, index=index)
|
197 |
+
|
198 |
+
df_result['pairs'] = pd.Series(0, dtype=int, index=index).add(
|
199 |
+
df.groupby('left')['left'].count(), fill_value=0
|
200 |
+
).add(
|
201 |
+
df.groupby('right')['right'].count(), fill_value=0
|
202 |
+
).astype(int)
|
203 |
+
|
204 |
df_result['rank'] = df_result['score'].rank(na_option='bottom', ascending=False).astype(int)
|
205 |
+
|
206 |
df_result.fillna(np.NINF, inplace=True)
|
207 |
df_result.sort_values(by=['rank', 'score'], ascending=[True, False], inplace=True)
|
208 |
df_result.reset_index(inplace=True)
|
|
|
229 |
value='Bradley-Terry (1952)',
|
230 |
label='Algorithm'
|
231 |
),
|
232 |
+
gr.Checkbox(
|
233 |
+
value=False,
|
234 |
+
label='Largest SCC',
|
235 |
+
info='Bradley-Terry and Newman algorithms require the comparison graph to be strongly-connected. '
|
236 |
+
'This option keeps only the largest strongly-connected component (SCC) of the input graph. '
|
237 |
+
'Some items might be missing as a result of this filtering.'
|
238 |
+
),
|
239 |
gr.Number(
|
240 |
label='Seed',
|
241 |
precision=0
|
|
|
251 |
)
|
252 |
],
|
253 |
examples=[
|
254 |
+
['food.csv', 'Bradley-Terry (1952)', False],
|
255 |
+
['food.csv', 'PageRank (1998)', False],
|
256 |
+
['food.csv', 'Newman (2023)', False]
|
257 |
],
|
258 |
title='Pair2Rank: Turn Your Side-by-Side Comparisons into Ranking!',
|
259 |
description='''
|
|
|
265 |
- `right`: the second compared item
|
266 |
- `winner`: the label indicating the winning item
|
267 |
|
268 |
+
Possible values for `winner` are `left`, `right`, or `tie`. The provided examples might be a good starting point.
|
|
|
269 |
|
270 |
As the output, this tool provides a table with items, their estimated scores, and ranks.
|
271 |
''',
|