File size: 979 Bytes
3c14787
 
 
fd58bc4
 
3c14787
fd58bc4
3c14787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2838c4d
3c14787
f3a5cd4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import datasets
from transformers import ViTImageProcessor, ViTForImageClassification
import torch
import gradio as gr

dataset =  datasets.load_dataset('beans') # This should be the same as the first line of Python code in this Colab notebook

feature_extractor = ViTImageProcessor.from_pretrained("saved_model_files")
model = ViTForImageClassification.from_pretrained("saved_model_files")

labels = dataset['train'].features['labels'].names

def classify(im):
  features = feature_extractor(im, return_tensors='pt')
  logits = model(features["pixel_values"])[-1]
  probability = torch.nn.functional.softmax(logits, dim=-1)
  probs = probability[0].detach().numpy()
  confidences = {label: float(probs[i]) for i, label in enumerate(labels)} 
  return confidences



description = "Bean leaf classifier for CV class"
interface = gr.Interface(fn=classify, inputs="image", outputs="label", title="Bean leaf classification!", description=description ) 

interface.launch(debug=True)