Spaces:
Sleeping
Sleeping
dvruette
commited on
Commit
•
face2e4
1
Parent(s):
c5dac9d
update main.py
Browse files
main.py
CHANGED
@@ -15,10 +15,14 @@ logger = logging.getLogger(__name__)
|
|
15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
# device = "cpu"
|
17 |
|
|
|
|
|
|
|
18 |
MODEL_CONFIGS = {
|
19 |
"Llama-2-7b-chat-hf": {
|
20 |
"identifier": "meta-llama/Llama-2-7b-chat-hf",
|
21 |
"dtype": torch.float16 if device.type == "cuda" else torch.float32,
|
|
|
22 |
"guidance_interval": [-16.0, 16.0],
|
23 |
"default_guidance_scale": 8.0,
|
24 |
"min_guidance_layer": 16,
|
@@ -26,16 +30,17 @@ MODEL_CONFIGS = {
|
|
26 |
"default_concept": "humor",
|
27 |
"concepts": ["humor", "creativity", "quality", "truthfulness", "compliance"],
|
28 |
},
|
29 |
-
"Mistral-7B-Instruct-v0.1": {
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
39 |
}
|
40 |
|
41 |
def load_concept_vectors(model, concepts):
|
@@ -43,7 +48,7 @@ def load_concept_vectors(model, concepts):
|
|
43 |
|
44 |
def load_model(model_name):
|
45 |
config = MODEL_CONFIGS[model_name]
|
46 |
-
model = AutoModelForCausalLM.from_pretrained(config["identifier"], torch_dtype=config["dtype"])
|
47 |
tokenizer = AutoTokenizer.from_pretrained(config["identifier"])
|
48 |
if tokenizer.chat_template is None:
|
49 |
tokenizer.chat_template = DEFAULT_CHAT_TEMPLATE
|
@@ -99,16 +104,20 @@ def generate_completion(
|
|
99 |
# move all other models to CPU
|
100 |
for name, (model, _) in MODELS.items():
|
101 |
if name != model_name:
|
102 |
-
|
|
|
|
|
103 |
torch.cuda.empty_cache()
|
104 |
# load the model
|
|
|
105 |
model, tokenizer = MODELS[model_name]
|
106 |
-
|
|
|
107 |
|
108 |
concept_vector = CONCEPT_VECTORS[model_name][concept]
|
109 |
guidance_layers = list(range(int(min_guidance_layer) - 1, int(max_guidance_layer)))
|
110 |
patch_model(model, concept_vector, guidance_scale=guidance_scale, guidance_layers=guidance_layers)
|
111 |
-
pipe = pipeline("conversational", model=model, tokenizer=tokenizer, device=device)
|
112 |
|
113 |
conversation = history_to_conversation(history)
|
114 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
@@ -141,13 +150,14 @@ class ConceptGuidanceUI:
|
|
141 |
default_model = model_names[0]
|
142 |
default_config = MODEL_CONFIGS[default_model]
|
143 |
default_concepts = default_config["concepts"]
|
|
|
144 |
|
145 |
saved_input = gr.State("")
|
146 |
|
147 |
with gr.Row(elem_id="concept-guidance-container"):
|
148 |
with gr.Column(scale=1, min_width=256):
|
149 |
model_dropdown = gr.Dropdown(model_names, value=default_model, label="Model")
|
150 |
-
concept_dropdown = gr.Dropdown(default_concepts, value=
|
151 |
guidance_scale = gr.Slider(*default_config["guidance_interval"], value=default_config["default_guidance_scale"], label="Guidance Scale")
|
152 |
min_guidance_layer = gr.Slider(1.0, 32.0, value=16.0, step=1.0, label="First Guidance Layer")
|
153 |
max_guidance_layer = gr.Slider(1.0, 32.0, value=32.0, step=1.0, label="Last Guidance Layer")
|
|
|
15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
# device = "cpu"
|
17 |
|
18 |
+
# comment in/out the models you want to use
|
19 |
+
# RAM requirements: ~16GB x #models (+ ~4GB overhead)
|
20 |
+
# VRAM requirements: ~16GB
|
21 |
MODEL_CONFIGS = {
|
22 |
"Llama-2-7b-chat-hf": {
|
23 |
"identifier": "meta-llama/Llama-2-7b-chat-hf",
|
24 |
"dtype": torch.float16 if device.type == "cuda" else torch.float32,
|
25 |
+
"load_in_8bit": False,
|
26 |
"guidance_interval": [-16.0, 16.0],
|
27 |
"default_guidance_scale": 8.0,
|
28 |
"min_guidance_layer": 16,
|
|
|
30 |
"default_concept": "humor",
|
31 |
"concepts": ["humor", "creativity", "quality", "truthfulness", "compliance"],
|
32 |
},
|
33 |
+
# "Mistral-7B-Instruct-v0.1": {
|
34 |
+
# "identifier": "mistralai/Mistral-7B-Instruct-v0.1",
|
35 |
+
# "dtype": torch.bfloat16 if device.type == "cuda" else torch.float32,
|
36 |
+
# "load_in_8bit": False,
|
37 |
+
# "guidance_interval": [-128.0, 128.0],
|
38 |
+
# "default_guidance_scale": 48.0,
|
39 |
+
# "min_guidance_layer": 8,
|
40 |
+
# "max_guidance_layer": 32,
|
41 |
+
# "default_concept": "humor",
|
42 |
+
# "concepts": ["humor", "creativity", "quality", "truthfulness", "compliance"],
|
43 |
+
# },
|
44 |
}
|
45 |
|
46 |
def load_concept_vectors(model, concepts):
|
|
|
48 |
|
49 |
def load_model(model_name):
|
50 |
config = MODEL_CONFIGS[model_name]
|
51 |
+
model = AutoModelForCausalLM.from_pretrained(config["identifier"], torch_dtype=config["dtype"], load_in_8bit=config["load_in_8bit"])
|
52 |
tokenizer = AutoTokenizer.from_pretrained(config["identifier"])
|
53 |
if tokenizer.chat_template is None:
|
54 |
tokenizer.chat_template = DEFAULT_CHAT_TEMPLATE
|
|
|
104 |
# move all other models to CPU
|
105 |
for name, (model, _) in MODELS.items():
|
106 |
if name != model_name:
|
107 |
+
config = MODEL_CONFIGS[name]
|
108 |
+
if not config["load_in_8bit"]:
|
109 |
+
model.to("cpu")
|
110 |
torch.cuda.empty_cache()
|
111 |
# load the model
|
112 |
+
config = MODEL_CONFIGS[model_name]
|
113 |
model, tokenizer = MODELS[model_name]
|
114 |
+
if not config["load_in_8bit"]:
|
115 |
+
model.to(device, non_blocking=True)
|
116 |
|
117 |
concept_vector = CONCEPT_VECTORS[model_name][concept]
|
118 |
guidance_layers = list(range(int(min_guidance_layer) - 1, int(max_guidance_layer)))
|
119 |
patch_model(model, concept_vector, guidance_scale=guidance_scale, guidance_layers=guidance_layers)
|
120 |
+
pipe = pipeline("conversational", model=model, tokenizer=tokenizer, device=(device if not config["load_in_8bit"] else None))
|
121 |
|
122 |
conversation = history_to_conversation(history)
|
123 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
|
|
150 |
default_model = model_names[0]
|
151 |
default_config = MODEL_CONFIGS[default_model]
|
152 |
default_concepts = default_config["concepts"]
|
153 |
+
default_concept = default_config["default_concept"]
|
154 |
|
155 |
saved_input = gr.State("")
|
156 |
|
157 |
with gr.Row(elem_id="concept-guidance-container"):
|
158 |
with gr.Column(scale=1, min_width=256):
|
159 |
model_dropdown = gr.Dropdown(model_names, value=default_model, label="Model")
|
160 |
+
concept_dropdown = gr.Dropdown(default_concepts, value=default_concept, label="Concept")
|
161 |
guidance_scale = gr.Slider(*default_config["guidance_interval"], value=default_config["default_guidance_scale"], label="Guidance Scale")
|
162 |
min_guidance_layer = gr.Slider(1.0, 32.0, value=16.0, step=1.0, label="First Guidance Layer")
|
163 |
max_guidance_layer = gr.Slider(1.0, 32.0, value=32.0, step=1.0, label="Last Guidance Layer")
|