producer / scripts /transcript.py
dwarkesh's picture
preview generator and transcript bold and formatting
91be0ad
import argparse
from dataclasses import dataclass
from pathlib import Path
import json
import hashlib
import os
from typing import List, Tuple, Iterator
import assemblyai as aai
from google import generativeai
from pydub import AudioSegment
import asyncio
import io
from multiprocessing import Pool
from functools import partial
from itertools import groupby
@dataclass
class Utterance:
"""A single utterance from a speaker"""
speaker: str
text: str
start: int # timestamp in ms from AssemblyAI
end: int # timestamp in ms from AssemblyAI
@property
def timestamp(self) -> str:
"""Format start time as HH:MM:SS"""
seconds = int(self.start // 1000)
hours = seconds // 3600
minutes = (seconds % 3600) // 60
seconds = seconds % 60
return f"{hours:02d}:{minutes:02d}:{seconds:02d}"
class Transcriber:
"""Handles getting and caching transcripts from AssemblyAI"""
def __init__(self, api_key: str):
aai.settings.api_key = api_key
self.cache_dir = Path("output/transcripts/.cache")
self.cache_dir.mkdir(parents=True, exist_ok=True)
def get_transcript(self, audio_path: Path) -> List[Utterance]:
"""Get transcript, using cache if available"""
cache_file = self.cache_dir / f"{audio_path.stem}.json"
if cache_file.exists():
with open(cache_file) as f:
data = json.load(f)
if data["hash"] == self._get_file_hash(audio_path):
print("Using cached AssemblyAI transcript...")
# Create proper Utterance objects from cached data
return [
Utterance(
speaker=u["speaker"],
text=u["text"],
start=u["start"],
end=u["end"]
)
for u in data["utterances"]
]
print("Getting new transcript from AssemblyAI...")
config = aai.TranscriptionConfig(speaker_labels=True, language_code="en")
transcript = aai.Transcriber().transcribe(str(audio_path), config=config)
utterances = [
Utterance(
speaker=u.speaker,
text=u.text,
start=u.start,
end=u.end
)
for u in transcript.utterances
]
# Cache the raw utterance data
cache_data = {
"hash": self._get_file_hash(audio_path),
"utterances": [
{
"speaker": u.speaker,
"text": u.text,
"start": u.start,
"end": u.end
}
for u in utterances
]
}
with open(cache_file, "w") as f:
json.dump(cache_data, f, indent=2)
return utterances
def _get_file_hash(self, file_path: Path) -> str:
"""Calculate MD5 hash of a file"""
hash_md5 = hashlib.md5()
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
class Enhancer:
"""Handles enhancing transcripts using Gemini"""
def __init__(self, api_key: str):
generativeai.configure(api_key=api_key)
self.model = generativeai.GenerativeModel("gemini-exp-1206")
self.prompt = Path("prompts/enhance.txt").read_text()
async def enhance_chunks(self, chunks: List[Tuple[str, io.BytesIO]]) -> List[str]:
"""Enhance multiple transcript chunks concurrently with concurrency control"""
print(f"Enhancing {len(chunks)} chunks...")
# Create a semaphore to limit concurrent requests
semaphore = asyncio.Semaphore(3) # Allow up to 3 concurrent requests
async def process_chunk(i: int, chunk: Tuple[str, io.BytesIO]) -> str:
text, audio = chunk
async with semaphore:
audio.seek(0)
response = await self.model.generate_content_async(
[self.prompt, text, {"mime_type": "audio/mp3", "data": audio.read()}]
)
print(f"Completed chunk {i+1}/{len(chunks)}")
return response.text
# Create tasks for all chunks and run them concurrently
tasks = [
process_chunk(i, chunk)
for i, chunk in enumerate(chunks)
]
# Wait for all tasks to complete
results = await asyncio.gather(*tasks)
return results
@dataclass
class SpeakerDialogue:
"""Represents a continuous section of speech from a single speaker"""
speaker: str
utterances: List[Utterance]
@property
def start(self) -> int:
"""Start time of first utterance"""
return self.utterances[0].start
@property
def end(self) -> int:
"""End time of last utterance"""
return self.utterances[-1].end
@property
def timestamp(self) -> str:
"""Format start time as HH:MM:SS"""
return self.utterances[0].timestamp
def format(self, markdown: bool = False) -> str:
"""Format this dialogue as text with newlines between utterances
Args:
markdown: If True, add markdown formatting for speaker and timestamp
"""
texts = [u.text + "\n\n" for u in self.utterances] # Add two newlines after each utterance
combined_text = ''.join(texts).rstrip() # Remove trailing whitespace at the end
if markdown:
return f"**Speaker {self.speaker}** *{self.timestamp}*\n\n{combined_text}"
return f"Speaker {self.speaker} {self.timestamp}\n\n{combined_text}"
def group_utterances_by_speaker(utterances: List[Utterance]) -> Iterator[SpeakerDialogue]:
"""Group consecutive utterances by the same speaker"""
for speaker, group in groupby(utterances, key=lambda u: u.speaker):
yield SpeakerDialogue(speaker=speaker, utterances=list(group))
def estimate_tokens(text: str, chars_per_token: int = 4) -> int:
"""
Estimate number of tokens in text
Args:
text: The text to estimate tokens for
chars_per_token: Estimated characters per token (default 4)
"""
return (len(text) + chars_per_token - 1) // chars_per_token
def chunk_dialogues(
dialogues: Iterator[SpeakerDialogue],
max_tokens: int = 2000,
chars_per_token: int = 4
) -> List[List[SpeakerDialogue]]:
"""
Split dialogues into chunks that fit within token limit
Args:
dialogues: Iterator of SpeakerDialogues
max_tokens: Maximum tokens per chunk
chars_per_token: Estimated characters per token (default 4)
"""
chunks = []
current_chunk = []
current_text = ""
for dialogue in dialogues:
# Format this dialogue
formatted = dialogue.format()
# If adding this dialogue would exceed token limit, start new chunk
new_text = current_text + "\n\n" + formatted if current_text else formatted
if current_chunk and estimate_tokens(new_text, chars_per_token) > max_tokens:
chunks.append(current_chunk)
current_chunk = [dialogue]
current_text = formatted
else:
current_chunk.append(dialogue)
current_text = new_text
if current_chunk:
chunks.append(current_chunk)
return chunks
def format_chunk(dialogues: List[SpeakerDialogue], markdown: bool = False) -> str:
"""Format a chunk of dialogues into readable text
Args:
dialogues: List of dialogues to format
markdown: If True, add markdown formatting for speaker and timestamp
"""
return "\n\n".join(dialogue.format(markdown=markdown) for dialogue in dialogues)
def prepare_audio_chunks(audio_path: Path, utterances: List[Utterance]) -> List[Tuple[str, io.BytesIO]]:
"""Prepare audio chunks and their corresponding text"""
# Group utterances by speaker and split into chunks
dialogues = group_utterances_by_speaker(utterances)
chunks = chunk_dialogues(dialogues)
print(f"Preparing {len(chunks)} audio segments...")
# Load audio once
audio = AudioSegment.from_file(audio_path)
# Process each chunk
prepared = []
for chunk in chunks:
# Extract just the needed segment
segment = audio[chunk[0].start:chunk[-1].end]
buffer = io.BytesIO()
# Use lower quality MP3 for faster processing
segment.export(buffer, format="mp3", parameters=["-q:a", "9"])
# Use non-markdown format for Gemini
prepared.append((format_chunk(chunk, markdown=False), buffer))
return prepared
def main():
parser = argparse.ArgumentParser()
parser.add_argument("audio_file", help="Audio file to transcribe")
args = parser.parse_args()
audio_path = Path(args.audio_file)
if not audio_path.exists():
raise FileNotFoundError(f"File not found: {audio_path}")
out_dir = Path("output/transcripts")
out_dir.mkdir(parents=True, exist_ok=True)
try:
# Get transcript
transcriber = Transcriber(os.getenv("ASSEMBLYAI_API_KEY"))
utterances = transcriber.get_transcript(audio_path)
# Save original transcript
dialogues = list(group_utterances_by_speaker(utterances)) # Convert iterator to list
original = format_chunk(dialogues, markdown=True) # Use markdown for final output
(out_dir / "autogenerated-transcript.md").write_text(original)
# Enhance transcript
enhancer = Enhancer(os.getenv("GOOGLE_API_KEY"))
chunks = prepare_audio_chunks(audio_path, utterances)
enhanced = asyncio.run(enhancer.enhance_chunks(chunks))
# Save enhanced transcript with markdown
merged = "\n\n".join(chunk.strip() for chunk in enhanced)
# Apply markdown formatting to the final enhanced transcript
merged = apply_markdown_formatting(merged)
(out_dir / "transcript.md").write_text(merged)
print("\nTranscripts saved to:")
print(f"- {out_dir}/autogenerated-transcript.md")
print(f"- {out_dir}/transcript.md")
except Exception as e:
print(f"Error: {e}")
return 1
return 0
def apply_markdown_formatting(text: str) -> str:
"""Apply markdown formatting to speaker and timestamp in the transcript"""
import re
pattern = r"(Speaker \w+) (\d{2}:\d{2}:\d{2})"
return re.sub(pattern, r"**\1** *\2*", text)
if __name__ == "__main__":
main()