|
from multiprocessing.sharedctypes import Value |
|
import os |
|
import librosa |
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from einops import rearrange, repeat |
|
from contextlib import contextmanager |
|
from functools import partial |
|
from tqdm import tqdm |
|
from torchvision.utils import make_grid |
|
from audiosr.latent_diffusion.modules.encoders.modules import * |
|
|
|
from audiosr.latent_diffusion.util import ( |
|
exists, |
|
default, |
|
count_params, |
|
instantiate_from_config, |
|
) |
|
from audiosr.latent_diffusion.modules.ema import LitEma |
|
from audiosr.latent_diffusion.modules.distributions.distributions import ( |
|
DiagonalGaussianDistribution, |
|
) |
|
|
|
from audiosr.latent_diffusion.modules.diffusionmodules.util import ( |
|
make_beta_schedule, |
|
extract_into_tensor, |
|
noise_like, |
|
) |
|
|
|
from audiosr.latent_diffusion.models.ddim import DDIMSampler |
|
from audiosr.latent_diffusion.models.plms import PLMSSampler |
|
import soundfile as sf |
|
import os |
|
|
|
__conditioning_keys__ = {"concat": "c_concat", "crossattn": "c_crossattn", "adm": "y"} |
|
|
|
|
|
def disabled_train(self, mode=True): |
|
"""Overwrite model.train with this function to make sure train/eval mode |
|
does not change anymore.""" |
|
return self |
|
|
|
|
|
def uniform_on_device(r1, r2, shape, device): |
|
return (r1 - r2) * torch.rand(*shape, device=device) + r2 |
|
|
|
|
|
class DDPM(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
unet_config, |
|
sampling_rate=None, |
|
timesteps=1000, |
|
beta_schedule="linear", |
|
loss_type="l2", |
|
ckpt_path=None, |
|
ignore_keys=[], |
|
load_only_unet=False, |
|
monitor="val/loss", |
|
use_ema=True, |
|
first_stage_key="image", |
|
latent_t_size=256, |
|
latent_f_size=16, |
|
channels=3, |
|
log_every_t=100, |
|
clip_denoised=True, |
|
linear_start=1e-4, |
|
linear_end=2e-2, |
|
cosine_s=8e-3, |
|
given_betas=None, |
|
original_elbo_weight=0.0, |
|
v_posterior=0.0, |
|
l_simple_weight=1.0, |
|
conditioning_key=None, |
|
parameterization="eps", |
|
scheduler_config=None, |
|
use_positional_encodings=False, |
|
learn_logvar=False, |
|
logvar_init=0.0, |
|
evaluator=None, |
|
device=None, |
|
): |
|
super().__init__() |
|
assert parameterization in [ |
|
"eps", |
|
"x0", |
|
"v", |
|
], 'currently only supporting "eps" and "x0" and "v"' |
|
self.parameterization = parameterization |
|
self.state = None |
|
self.device = device |
|
|
|
|
|
|
|
assert sampling_rate is not None |
|
self.validation_folder_name = "temp_name" |
|
self.clip_denoised = clip_denoised |
|
self.log_every_t = log_every_t |
|
self.first_stage_key = first_stage_key |
|
self.sampling_rate = sampling_rate |
|
|
|
self.clap = CLAPAudioEmbeddingClassifierFreev2( |
|
pretrained_path="", |
|
enable_cuda=self.device == "cuda", |
|
sampling_rate=self.sampling_rate, |
|
embed_mode="audio", |
|
amodel="HTSAT-base", |
|
) |
|
|
|
self.initialize_param_check_toolkit() |
|
|
|
self.latent_t_size = latent_t_size |
|
self.latent_f_size = latent_f_size |
|
|
|
self.channels = channels |
|
self.use_positional_encodings = use_positional_encodings |
|
self.model = DiffusionWrapper(unet_config, conditioning_key) |
|
count_params(self.model, verbose=True) |
|
self.use_ema = use_ema |
|
if self.use_ema: |
|
self.model_ema = LitEma(self.model) |
|
|
|
|
|
self.use_scheduler = scheduler_config is not None |
|
if self.use_scheduler: |
|
self.scheduler_config = scheduler_config |
|
|
|
self.v_posterior = v_posterior |
|
self.original_elbo_weight = original_elbo_weight |
|
self.l_simple_weight = l_simple_weight |
|
|
|
if monitor is not None: |
|
self.monitor = monitor |
|
if ckpt_path is not None: |
|
self.init_from_ckpt( |
|
ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet |
|
) |
|
|
|
self.register_schedule( |
|
given_betas=given_betas, |
|
beta_schedule=beta_schedule, |
|
timesteps=timesteps, |
|
linear_start=linear_start, |
|
linear_end=linear_end, |
|
cosine_s=cosine_s, |
|
) |
|
|
|
self.loss_type = loss_type |
|
|
|
self.learn_logvar = learn_logvar |
|
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) |
|
if self.learn_logvar: |
|
self.logvar = nn.Parameter(self.logvar, requires_grad=True) |
|
else: |
|
self.logvar = nn.Parameter(self.logvar, requires_grad=False) |
|
|
|
self.logger_save_dir = None |
|
self.logger_exp_name = None |
|
self.logger_exp_group_name = None |
|
self.logger_version = None |
|
|
|
self.label_indices_total = None |
|
|
|
self.metrics_buffer = { |
|
"val/kullback_leibler_divergence_sigmoid": 15.0, |
|
"val/kullback_leibler_divergence_softmax": 10.0, |
|
"val/psnr": 0.0, |
|
"val/ssim": 0.0, |
|
"val/inception_score_mean": 1.0, |
|
"val/inception_score_std": 0.0, |
|
"val/kernel_inception_distance_mean": 0.0, |
|
"val/kernel_inception_distance_std": 0.0, |
|
"val/frechet_inception_distance": 133.0, |
|
"val/frechet_audio_distance": 32.0, |
|
} |
|
self.initial_learning_rate = None |
|
self.test_data_subset_path = None |
|
|
|
def get_log_dir(self): |
|
return os.path.join( |
|
self.logger_save_dir, self.logger_exp_group_name, self.logger_exp_name |
|
) |
|
|
|
def set_log_dir(self, save_dir, exp_group_name, exp_name): |
|
self.logger_save_dir = save_dir |
|
self.logger_exp_group_name = exp_group_name |
|
self.logger_exp_name = exp_name |
|
|
|
def register_schedule( |
|
self, |
|
given_betas=None, |
|
beta_schedule="linear", |
|
timesteps=1000, |
|
linear_start=1e-4, |
|
linear_end=2e-2, |
|
cosine_s=8e-3, |
|
): |
|
if exists(given_betas): |
|
betas = given_betas |
|
else: |
|
betas = make_beta_schedule( |
|
beta_schedule, |
|
timesteps, |
|
linear_start=linear_start, |
|
linear_end=linear_end, |
|
cosine_s=cosine_s, |
|
) |
|
alphas = 1.0 - betas |
|
alphas_cumprod = np.cumprod(alphas, axis=0) |
|
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1]) |
|
|
|
(timesteps,) = betas.shape |
|
self.num_timesteps = int(timesteps) |
|
self.linear_start = linear_start |
|
self.linear_end = linear_end |
|
assert ( |
|
alphas_cumprod.shape[0] == self.num_timesteps |
|
), "alphas have to be defined for each timestep" |
|
|
|
to_torch = partial(torch.tensor, dtype=torch.float32) |
|
|
|
self.register_buffer("betas", to_torch(betas)) |
|
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) |
|
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev)) |
|
|
|
|
|
epsilon = 1e-10 |
|
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod))) |
|
self.register_buffer( |
|
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod)) |
|
) |
|
self.register_buffer( |
|
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod)) |
|
) |
|
self.register_buffer( |
|
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / (alphas_cumprod + epsilon))) |
|
) |
|
self.register_buffer( |
|
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / (alphas_cumprod + epsilon) - 1)) |
|
) |
|
|
|
|
|
posterior_variance = (1 - self.v_posterior) * betas * ( |
|
1.0 - alphas_cumprod_prev |
|
) / (1.0 - alphas_cumprod) + self.v_posterior * betas |
|
|
|
self.register_buffer("posterior_variance", to_torch(posterior_variance)) |
|
|
|
self.register_buffer( |
|
"posterior_log_variance_clipped", |
|
to_torch(np.log(np.maximum(posterior_variance, 1e-20))), |
|
) |
|
self.register_buffer( |
|
"posterior_mean_coef1", |
|
to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)), |
|
) |
|
self.register_buffer( |
|
"posterior_mean_coef2", |
|
to_torch( |
|
(1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod) |
|
), |
|
) |
|
|
|
if self.parameterization == "eps": |
|
lvlb_weights = self.betas**2 / ( |
|
2 |
|
* self.posterior_variance |
|
* to_torch(alphas) |
|
* (1 - self.alphas_cumprod) |
|
) |
|
elif self.parameterization == "x0": |
|
lvlb_weights = ( |
|
0.5 |
|
* np.sqrt(torch.Tensor(alphas_cumprod)) |
|
/ (2.0 * 1 - torch.Tensor(alphas_cumprod)) |
|
) |
|
elif self.parameterization == "v": |
|
lvlb_weights = torch.ones_like( |
|
self.betas**2 |
|
/ ( |
|
2 |
|
* self.posterior_variance |
|
* to_torch(alphas) |
|
* (1 - self.alphas_cumprod) |
|
) |
|
) |
|
else: |
|
raise NotImplementedError("mu not supported") |
|
|
|
lvlb_weights[0] = lvlb_weights[1] |
|
self.register_buffer("lvlb_weights", lvlb_weights, persistent=False) |
|
assert not torch.isnan(self.lvlb_weights).all() |
|
|
|
@contextmanager |
|
def ema_scope(self, context=None): |
|
if self.use_ema: |
|
self.model_ema.store(self.model.parameters()) |
|
self.model_ema.copy_to(self.model) |
|
|
|
|
|
try: |
|
yield None |
|
finally: |
|
if self.use_ema: |
|
self.model_ema.restore(self.model.parameters()) |
|
|
|
|
|
|
|
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): |
|
sd = torch.load(path, map_location="cpu") |
|
if "state_dict" in list(sd.keys()): |
|
sd = sd["state_dict"] |
|
keys = list(sd.keys()) |
|
for k in keys: |
|
for ik in ignore_keys: |
|
if k.startswith(ik): |
|
print("Deleting key {} from state_dict.".format(k)) |
|
del sd[k] |
|
missing, unexpected = ( |
|
self.load_state_dict(sd, strict=False) |
|
if not only_model |
|
else self.model.load_state_dict(sd, strict=False) |
|
) |
|
print( |
|
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys" |
|
) |
|
if len(missing) > 0: |
|
print(f"Missing Keys: {missing}") |
|
if len(unexpected) > 0: |
|
print(f"Unexpected Keys: {unexpected}") |
|
|
|
def q_mean_variance(self, x_start, t): |
|
""" |
|
Get the distribution q(x_t | x_0). |
|
:param x_start: the [N x C x ...] tensor of noiseless inputs. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:return: A tuple (mean, variance, log_variance), all of x_start's shape. |
|
""" |
|
mean = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start |
|
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) |
|
log_variance = extract_into_tensor( |
|
self.log_one_minus_alphas_cumprod, t, x_start.shape |
|
) |
|
return mean, variance, log_variance |
|
|
|
def predict_start_from_noise(self, x_t, t, noise): |
|
return ( |
|
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t |
|
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) |
|
* noise |
|
) |
|
|
|
def q_posterior(self, x_start, x_t, t): |
|
posterior_mean = ( |
|
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start |
|
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t |
|
) |
|
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) |
|
posterior_log_variance_clipped = extract_into_tensor( |
|
self.posterior_log_variance_clipped, t, x_t.shape |
|
) |
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped |
|
|
|
def p_mean_variance(self, x, t, clip_denoised: bool): |
|
model_out = self.model(x, t) |
|
if self.parameterization == "eps": |
|
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) |
|
elif self.parameterization == "x0": |
|
x_recon = model_out |
|
if clip_denoised: |
|
x_recon.clamp_(-1.0, 1.0) |
|
|
|
model_mean, posterior_variance, posterior_log_variance = self.q_posterior( |
|
x_start=x_recon, x_t=x, t=t |
|
) |
|
return model_mean, posterior_variance, posterior_log_variance |
|
|
|
@torch.no_grad() |
|
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): |
|
b, *_, device = *x.shape, x.device |
|
model_mean, _, model_log_variance = self.p_mean_variance( |
|
x=x, t=t, clip_denoised=clip_denoised |
|
) |
|
noise = noise_like(x.shape, device, repeat_noise) |
|
|
|
nonzero_mask = ( |
|
(1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous() |
|
) |
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise |
|
|
|
@torch.no_grad() |
|
def p_sample_loop(self, shape, return_intermediates=False): |
|
device = self.betas.device |
|
b = shape[0] |
|
img = torch.randn(shape, device=device) |
|
intermediates = [img] |
|
for i in tqdm( |
|
reversed(range(0, self.num_timesteps)), |
|
desc="Sampling t", |
|
total=self.num_timesteps, |
|
): |
|
img = self.p_sample( |
|
img, |
|
torch.full((b,), i, device=device, dtype=torch.long), |
|
clip_denoised=self.clip_denoised, |
|
) |
|
if i % self.log_every_t == 0 or i == self.num_timesteps - 1: |
|
intermediates.append(img) |
|
if return_intermediates: |
|
return img, intermediates |
|
return img |
|
|
|
@torch.no_grad() |
|
def sample(self, batch_size=16, return_intermediates=False): |
|
shape = (batch_size, channels, self.latent_t_size, self.latent_f_size) |
|
self.channels |
|
return self.p_sample_loop(shape, return_intermediates=return_intermediates) |
|
|
|
def q_sample(self, x_start, t, noise=None): |
|
noise = default(noise, lambda: torch.randn_like(x_start)) |
|
return ( |
|
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start |
|
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) |
|
* noise |
|
) |
|
|
|
def get_loss(self, pred, target, mean=True): |
|
if self.loss_type == "l1": |
|
loss = (target - pred).abs() |
|
if mean: |
|
loss = loss.mean() |
|
elif self.loss_type == "l2": |
|
if mean: |
|
loss = torch.nn.functional.mse_loss(target, pred) |
|
else: |
|
loss = torch.nn.functional.mse_loss(target, pred, reduction="none") |
|
else: |
|
raise NotImplementedError("unknown loss type '{loss_type}'") |
|
|
|
return loss |
|
|
|
def predict_start_from_z_and_v(self, x_t, t, v): |
|
|
|
|
|
return ( |
|
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t |
|
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v |
|
) |
|
|
|
def predict_eps_from_z_and_v(self, x_t, t, v): |
|
return ( |
|
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v |
|
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) |
|
* x_t |
|
) |
|
|
|
def get_v(self, x, noise, t): |
|
return ( |
|
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise |
|
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x |
|
) |
|
|
|
def forward(self, x, *args, **kwargs): |
|
|
|
|
|
t = torch.randint( |
|
0, self.num_timesteps, (x.shape[0],), device=self.device |
|
).long() |
|
return self.p_losses(x, t, *args, **kwargs) |
|
|
|
def get_input(self, batch, k): |
|
|
|
|
|
waveform, stft, fbank = ( |
|
batch["waveform"], |
|
batch["stft"], |
|
batch["log_mel_spec"], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ret = {} |
|
|
|
ret["fbank"] = ( |
|
fbank.unsqueeze(1).to(memory_format=torch.contiguous_format).float() |
|
) |
|
ret["stft"] = stft.to(memory_format=torch.contiguous_format).float() |
|
|
|
|
|
ret["waveform"] = waveform.to(memory_format=torch.contiguous_format).float() |
|
|
|
|
|
|
|
|
|
for key in batch.keys(): |
|
if key not in ret.keys(): |
|
ret[key] = batch[key] |
|
|
|
return ret[k] |
|
|
|
def _get_rows_from_list(self, samples): |
|
n_imgs_per_row = len(samples) |
|
denoise_grid = rearrange(samples, "n b c h w -> b n c h w") |
|
denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w") |
|
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) |
|
return denoise_grid |
|
|
|
@torch.no_grad() |
|
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): |
|
log = dict() |
|
x = self.get_input(batch, self.first_stage_key) |
|
N = min(x.shape[0], N) |
|
n_row = min(x.shape[0], n_row) |
|
x = x.to(self.device)[:N] |
|
log["inputs"] = x |
|
|
|
|
|
diffusion_row = list() |
|
x_start = x[:n_row] |
|
|
|
for t in range(self.num_timesteps): |
|
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: |
|
t = repeat(torch.tensor([t]), "1 -> b", b=n_row) |
|
t = t.to(self.device).long() |
|
noise = torch.randn_like(x_start) |
|
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) |
|
diffusion_row.append(x_noisy) |
|
|
|
log["diffusion_row"] = self._get_rows_from_list(diffusion_row) |
|
|
|
if sample: |
|
|
|
with self.ema_scope("Plotting"): |
|
samples, denoise_row = self.sample( |
|
batch_size=N, return_intermediates=True |
|
) |
|
|
|
log["samples"] = samples |
|
log["denoise_row"] = self._get_rows_from_list(denoise_row) |
|
|
|
if return_keys: |
|
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: |
|
return log |
|
else: |
|
return {key: log[key] for key in return_keys} |
|
return log |
|
|
|
def configure_optimizers(self): |
|
lr = self.learning_rate |
|
params = list(self.model.parameters()) |
|
if self.learn_logvar: |
|
params = params + [self.logvar] |
|
opt = torch.optim.AdamW(params, lr=lr) |
|
return opt |
|
|
|
def initialize_param_check_toolkit(self): |
|
self.tracked_steps = 0 |
|
self.param_dict = {} |
|
|
|
def statistic_require_grad_tensor_number(self, module, name=None): |
|
requires_grad_num = 0 |
|
total_num = 0 |
|
require_grad_tensor = None |
|
for p in module.parameters(): |
|
if p.requires_grad: |
|
requires_grad_num += 1 |
|
if require_grad_tensor is None: |
|
require_grad_tensor = p |
|
total_num += 1 |
|
print( |
|
"Module: [%s] have %s trainable parameters out of %s total parameters (%.2f)" |
|
% (name, requires_grad_num, total_num, requires_grad_num / total_num) |
|
) |
|
return require_grad_tensor |
|
|
|
|
|
class LatentDiffusion(DDPM): |
|
"""main class""" |
|
|
|
def __init__( |
|
self, |
|
first_stage_config, |
|
cond_stage_config=None, |
|
num_timesteps_cond=None, |
|
cond_stage_key="image", |
|
optimize_ddpm_parameter=True, |
|
unconditional_prob_cfg=0.1, |
|
warmup_steps=10000, |
|
cond_stage_trainable=False, |
|
concat_mode=True, |
|
cond_stage_forward=None, |
|
conditioning_key=None, |
|
scale_factor=1.0, |
|
batchsize=None, |
|
evaluation_params={}, |
|
scale_by_std=False, |
|
base_learning_rate=None, |
|
*args, |
|
**kwargs, |
|
): |
|
self.learning_rate = base_learning_rate |
|
self.num_timesteps_cond = default(num_timesteps_cond, 1) |
|
self.scale_by_std = scale_by_std |
|
self.warmup_steps = warmup_steps |
|
|
|
if optimize_ddpm_parameter: |
|
if unconditional_prob_cfg == 0.0: |
|
"You choose to optimize DDPM. The classifier free guidance scale should be 0.1" |
|
unconditional_prob_cfg = 0.1 |
|
else: |
|
if unconditional_prob_cfg == 0.1: |
|
"You choose not to optimize DDPM. The classifier free guidance scale should be 0.0" |
|
unconditional_prob_cfg = 0.0 |
|
|
|
self.evaluation_params = evaluation_params |
|
assert self.num_timesteps_cond <= kwargs["timesteps"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
conditioning_key = list(cond_stage_config.keys()) |
|
|
|
self.conditioning_key = conditioning_key |
|
|
|
ckpt_path = kwargs.pop("ckpt_path", None) |
|
ignore_keys = kwargs.pop("ignore_keys", []) |
|
super().__init__(conditioning_key=conditioning_key, *args, **kwargs) |
|
|
|
self.optimize_ddpm_parameter = optimize_ddpm_parameter |
|
|
|
|
|
|
|
|
|
|
|
self.concat_mode = concat_mode |
|
self.cond_stage_key = cond_stage_key |
|
self.cond_stage_key_orig = cond_stage_key |
|
try: |
|
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 |
|
except: |
|
self.num_downs = 0 |
|
if not scale_by_std: |
|
self.scale_factor = scale_factor |
|
else: |
|
self.register_buffer("scale_factor", torch.tensor(scale_factor)) |
|
self.model.scale_factor = self.scale_factor |
|
self.instantiate_first_stage(first_stage_config) |
|
self.unconditional_prob_cfg = unconditional_prob_cfg |
|
self.cond_stage_models = nn.ModuleList([]) |
|
self.instantiate_cond_stage(cond_stage_config) |
|
self.cond_stage_forward = cond_stage_forward |
|
self.clip_denoised = False |
|
self.bbox_tokenizer = None |
|
self.conditional_dry_run_finished = False |
|
self.restarted_from_ckpt = False |
|
if ckpt_path is not None: |
|
self.init_from_ckpt(ckpt_path, ignore_keys) |
|
self.restarted_from_ckpt = True |
|
|
|
def configure_optimizers(self): |
|
lr = self.learning_rate |
|
params = list(self.model.parameters()) |
|
|
|
for each in self.cond_stage_models: |
|
params = params + list( |
|
each.parameters() |
|
) |
|
|
|
if self.learn_logvar: |
|
print("Diffusion model optimizing logvar") |
|
params.append(self.logvar) |
|
opt = torch.optim.AdamW(params, lr=lr) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return opt |
|
|
|
def make_cond_schedule( |
|
self, |
|
): |
|
self.cond_ids = torch.full( |
|
size=(self.num_timesteps,), |
|
fill_value=self.num_timesteps - 1, |
|
dtype=torch.long, |
|
) |
|
ids = torch.round( |
|
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond) |
|
).long() |
|
self.cond_ids[: self.num_timesteps_cond] = ids |
|
|
|
@torch.no_grad() |
|
def on_train_batch_start(self, batch, batch_idx): |
|
|
|
if ( |
|
self.scale_factor == 1 |
|
and self.scale_by_std |
|
and self.current_epoch == 0 |
|
and self.global_step == 0 |
|
and batch_idx == 0 |
|
and not self.restarted_from_ckpt |
|
): |
|
|
|
|
|
print("### USING STD-RESCALING ###") |
|
x = super().get_input(batch, self.first_stage_key) |
|
x = x.to(self.device) |
|
encoder_posterior = self.encode_first_stage(x) |
|
z = self.get_first_stage_encoding(encoder_posterior).detach() |
|
del self.scale_factor |
|
self.register_buffer("scale_factor", 1.0 / z.flatten().std()) |
|
print(f"setting self.scale_factor to {self.scale_factor}") |
|
print("### USING STD-RESCALING ###") |
|
|
|
def register_schedule( |
|
self, |
|
given_betas=None, |
|
beta_schedule="linear", |
|
timesteps=1000, |
|
linear_start=1e-4, |
|
linear_end=2e-2, |
|
cosine_s=8e-3, |
|
): |
|
super().register_schedule( |
|
given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s |
|
) |
|
|
|
self.shorten_cond_schedule = self.num_timesteps_cond > 1 |
|
if self.shorten_cond_schedule: |
|
self.make_cond_schedule() |
|
|
|
def instantiate_first_stage(self, config): |
|
model = instantiate_from_config(config) |
|
self.first_stage_model = model.eval() |
|
self.first_stage_model.train = disabled_train |
|
for param in self.first_stage_model.parameters(): |
|
param.requires_grad = False |
|
|
|
def make_decision(self, probability): |
|
if float(torch.rand(1)) < probability: |
|
return True |
|
else: |
|
return False |
|
|
|
def instantiate_cond_stage(self, config): |
|
self.cond_stage_model_metadata = {} |
|
for i, cond_model_key in enumerate(config.keys()): |
|
if ( |
|
"params" in config[cond_model_key] |
|
and "device" in config[cond_model_key]["params"] |
|
): |
|
config[cond_model_key]["params"]["device"] = self.device |
|
model = instantiate_from_config(config[cond_model_key]) |
|
model = model.to(self.device) |
|
self.cond_stage_models.append(model) |
|
self.cond_stage_model_metadata[cond_model_key] = { |
|
"model_idx": i, |
|
"cond_stage_key": config[cond_model_key]["cond_stage_key"], |
|
"conditioning_key": config[cond_model_key]["conditioning_key"], |
|
} |
|
|
|
def get_first_stage_encoding(self, encoder_posterior): |
|
if isinstance(encoder_posterior, DiagonalGaussianDistribution): |
|
z = encoder_posterior.sample() |
|
elif isinstance(encoder_posterior, torch.Tensor): |
|
z = encoder_posterior |
|
else: |
|
raise NotImplementedError( |
|
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented" |
|
) |
|
return self.scale_factor * z |
|
|
|
def get_learned_conditioning(self, c, key, unconditional_cfg): |
|
assert key in self.cond_stage_model_metadata.keys() |
|
|
|
|
|
if not unconditional_cfg: |
|
c = self.cond_stage_models[ |
|
self.cond_stage_model_metadata[key]["model_idx"] |
|
](c) |
|
else: |
|
|
|
if isinstance(c, dict): |
|
c = c[list(c.keys())[0]] |
|
|
|
if isinstance(c, torch.Tensor): |
|
batchsize = c.size(0) |
|
elif isinstance(c, list): |
|
batchsize = len(c) |
|
else: |
|
raise NotImplementedError() |
|
|
|
c = self.cond_stage_models[ |
|
self.cond_stage_model_metadata[key]["model_idx"] |
|
].get_unconditional_condition(batchsize) |
|
|
|
return c |
|
|
|
def get_input( |
|
self, |
|
batch, |
|
k, |
|
return_first_stage_encode=True, |
|
return_decoding_output=False, |
|
return_encoder_input=False, |
|
return_encoder_output=False, |
|
unconditional_prob_cfg=0.1, |
|
): |
|
x = super().get_input(batch, k) |
|
|
|
x = x.to(self.device) |
|
|
|
if return_first_stage_encode: |
|
encoder_posterior = self.encode_first_stage(x) |
|
z = self.get_first_stage_encoding(encoder_posterior).detach() |
|
else: |
|
z = None |
|
cond_dict = {} |
|
if len(self.cond_stage_model_metadata.keys()) > 0: |
|
unconditional_cfg = False |
|
if self.conditional_dry_run_finished and self.make_decision( |
|
unconditional_prob_cfg |
|
): |
|
unconditional_cfg = True |
|
for cond_model_key in self.cond_stage_model_metadata.keys(): |
|
cond_stage_key = self.cond_stage_model_metadata[cond_model_key][ |
|
"cond_stage_key" |
|
] |
|
|
|
if cond_model_key in cond_dict.keys(): |
|
continue |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if cond_stage_key != "all": |
|
xc = super().get_input(batch, cond_stage_key) |
|
if type(xc) == torch.Tensor: |
|
xc = xc.to(self.device) |
|
else: |
|
xc = batch |
|
|
|
|
|
|
|
c = self.get_learned_conditioning( |
|
xc, key=cond_model_key, unconditional_cfg=unconditional_cfg |
|
) |
|
|
|
|
|
|
|
if isinstance(c, dict): |
|
for k in c.keys(): |
|
cond_dict[k] = c[k] |
|
else: |
|
cond_dict[cond_model_key] = c |
|
|
|
|
|
|
|
|
|
|
|
|
|
out = [z, cond_dict] |
|
|
|
if return_decoding_output: |
|
xrec = self.decode_first_stage(z) |
|
out += [xrec] |
|
|
|
if return_encoder_input: |
|
out += [x] |
|
|
|
if return_encoder_output: |
|
out += [encoder_posterior] |
|
|
|
if not self.conditional_dry_run_finished: |
|
self.conditional_dry_run_finished = True |
|
|
|
|
|
return out |
|
|
|
def decode_first_stage(self, z): |
|
with torch.no_grad(): |
|
z = 1.0 / self.scale_factor * z |
|
decoding = self.first_stage_model.decode(z) |
|
return decoding |
|
|
|
def mel_spectrogram_to_waveform( |
|
self, mel, savepath=".", bs=None, name="outwav", save=True |
|
): |
|
|
|
if len(mel.size()) == 4: |
|
mel = mel.squeeze(1) |
|
mel = mel.permute(0, 2, 1) |
|
waveform = self.first_stage_model.vocoder(mel) |
|
waveform = waveform.cpu().detach().numpy() |
|
if save: |
|
self.save_waveform(waveform, savepath, name) |
|
return waveform |
|
|
|
def encode_first_stage(self, x): |
|
with torch.no_grad(): |
|
return self.first_stage_model.encode(x) |
|
|
|
def extract_possible_loss_in_cond_dict(self, cond_dict): |
|
|
|
|
|
assert isinstance(cond_dict, dict) |
|
losses = {} |
|
|
|
for cond_key in cond_dict.keys(): |
|
if "loss" in cond_key and "noncond" in cond_key: |
|
assert cond_key not in losses.keys() |
|
losses[cond_key] = cond_dict[cond_key] |
|
|
|
return losses |
|
|
|
def filter_useful_cond_dict(self, cond_dict): |
|
new_cond_dict = {} |
|
for key in cond_dict.keys(): |
|
if key in self.cond_stage_model_metadata.keys(): |
|
new_cond_dict[key] = cond_dict[key] |
|
|
|
|
|
|
|
for key in self.cond_stage_model_metadata.keys(): |
|
assert key in new_cond_dict.keys(), "%s, %s" % ( |
|
key, |
|
str(new_cond_dict.keys()), |
|
) |
|
|
|
return new_cond_dict |
|
|
|
def shared_step(self, batch, **kwargs): |
|
if self.training: |
|
|
|
unconditional_prob_cfg = self.unconditional_prob_cfg |
|
else: |
|
unconditional_prob_cfg = 0.0 |
|
|
|
x, c = self.get_input( |
|
batch, self.first_stage_key, unconditional_prob_cfg=unconditional_prob_cfg |
|
) |
|
|
|
if self.optimize_ddpm_parameter: |
|
loss, loss_dict = self(x, self.filter_useful_cond_dict(c)) |
|
else: |
|
loss_dict = {} |
|
loss = None |
|
|
|
additional_loss_for_cond_modules = self.extract_possible_loss_in_cond_dict(c) |
|
assert isinstance(additional_loss_for_cond_modules, dict) |
|
|
|
loss_dict.update(additional_loss_for_cond_modules) |
|
|
|
if len(additional_loss_for_cond_modules.keys()) > 0: |
|
for k in additional_loss_for_cond_modules.keys(): |
|
if loss is None: |
|
loss = additional_loss_for_cond_modules[k] |
|
else: |
|
loss = loss + additional_loss_for_cond_modules[k] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.training: |
|
assert loss is not None |
|
|
|
return loss, loss_dict |
|
|
|
def forward(self, x, c, *args, **kwargs): |
|
t = torch.randint( |
|
0, self.num_timesteps, (x.shape[0],), device=self.device |
|
).long() |
|
|
|
|
|
|
|
|
|
loss, loss_dict = self.p_losses(x, c, t, *args, **kwargs) |
|
return loss, loss_dict |
|
|
|
def reorder_cond_dict(self, cond_dict): |
|
|
|
new_cond_dict = {} |
|
for key in self.conditioning_key: |
|
new_cond_dict[key] = cond_dict[key] |
|
return new_cond_dict |
|
|
|
def apply_model(self, x_noisy, t, cond, return_ids=False): |
|
cond = self.reorder_cond_dict(cond) |
|
|
|
x_recon = self.model(x_noisy, t, cond_dict=cond) |
|
|
|
if isinstance(x_recon, tuple) and not return_ids: |
|
return x_recon[0] |
|
else: |
|
return x_recon |
|
|
|
def p_losses(self, x_start, cond, t, noise=None): |
|
noise = default(noise, lambda: torch.randn_like(x_start)) |
|
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) |
|
model_output = self.apply_model(x_noisy, t, cond) |
|
|
|
loss_dict = {} |
|
prefix = "train" if self.training else "val" |
|
|
|
if self.parameterization == "x0": |
|
target = x_start |
|
elif self.parameterization == "eps": |
|
target = noise |
|
elif self.parameterization == "v": |
|
target = self.get_v(x_start, noise, t) |
|
else: |
|
raise NotImplementedError() |
|
|
|
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) |
|
loss_dict.update({f"{prefix}/loss_simple": loss_simple.mean()}) |
|
|
|
logvar_t = self.logvar[t].to(self.device) |
|
loss = loss_simple / torch.exp(logvar_t) + logvar_t |
|
|
|
if self.learn_logvar: |
|
loss_dict.update({f"{prefix}/loss_gamma": loss.mean()}) |
|
loss_dict.update({"logvar": self.logvar.data.mean()}) |
|
|
|
loss = self.l_simple_weight * loss.mean() |
|
|
|
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) |
|
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() |
|
loss_dict.update({f"{prefix}/loss_vlb": loss_vlb}) |
|
loss += self.original_elbo_weight * loss_vlb |
|
loss_dict.update({f"{prefix}/loss": loss}) |
|
|
|
return loss, loss_dict |
|
|
|
def p_mean_variance( |
|
self, |
|
x, |
|
c, |
|
t, |
|
clip_denoised: bool, |
|
return_codebook_ids=False, |
|
quantize_denoised=False, |
|
return_x0=False, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
): |
|
t_in = t |
|
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) |
|
|
|
if score_corrector is not None: |
|
assert self.parameterization == "eps" |
|
model_out = score_corrector.modify_score( |
|
self, model_out, x, t, c, **corrector_kwargs |
|
) |
|
|
|
if return_codebook_ids: |
|
model_out, logits = model_out |
|
|
|
if self.parameterization == "eps": |
|
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) |
|
elif self.parameterization == "x0": |
|
x_recon = model_out |
|
else: |
|
raise NotImplementedError() |
|
|
|
if clip_denoised: |
|
x_recon.clamp_(-1.0, 1.0) |
|
if quantize_denoised: |
|
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) |
|
model_mean, posterior_variance, posterior_log_variance = self.q_posterior( |
|
x_start=x_recon, x_t=x, t=t |
|
) |
|
if return_codebook_ids: |
|
return model_mean, posterior_variance, posterior_log_variance, logits |
|
elif return_x0: |
|
return model_mean, posterior_variance, posterior_log_variance, x_recon |
|
else: |
|
return model_mean, posterior_variance, posterior_log_variance |
|
|
|
@torch.no_grad() |
|
def p_sample( |
|
self, |
|
x, |
|
c, |
|
t, |
|
clip_denoised=False, |
|
repeat_noise=False, |
|
return_codebook_ids=False, |
|
quantize_denoised=False, |
|
return_x0=False, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
): |
|
b, *_, device = *x.shape, x.device |
|
outputs = self.p_mean_variance( |
|
x=x, |
|
c=c, |
|
t=t, |
|
clip_denoised=clip_denoised, |
|
return_codebook_ids=return_codebook_ids, |
|
quantize_denoised=quantize_denoised, |
|
return_x0=return_x0, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
) |
|
if return_codebook_ids: |
|
raise DeprecationWarning("Support dropped.") |
|
model_mean, _, model_log_variance, logits = outputs |
|
elif return_x0: |
|
model_mean, _, model_log_variance, x0 = outputs |
|
else: |
|
model_mean, _, model_log_variance = outputs |
|
|
|
noise = noise_like(x.shape, device, repeat_noise) * temperature |
|
if noise_dropout > 0.0: |
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout) |
|
|
|
nonzero_mask = ( |
|
(1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous() |
|
) |
|
|
|
|
|
|
|
|
|
|
|
if return_x0: |
|
return ( |
|
model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, |
|
x0, |
|
) |
|
else: |
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise |
|
|
|
@torch.no_grad() |
|
def progressive_denoising( |
|
self, |
|
cond, |
|
shape, |
|
verbose=True, |
|
callback=None, |
|
quantize_denoised=False, |
|
img_callback=None, |
|
mask=None, |
|
x0=None, |
|
temperature=1.0, |
|
noise_dropout=0.0, |
|
score_corrector=None, |
|
corrector_kwargs=None, |
|
batch_size=None, |
|
x_T=None, |
|
start_T=None, |
|
log_every_t=None, |
|
): |
|
if not log_every_t: |
|
log_every_t = self.log_every_t |
|
timesteps = self.num_timesteps |
|
if batch_size is not None: |
|
b = batch_size if batch_size is not None else shape[0] |
|
shape = [batch_size] + list(shape) |
|
else: |
|
b = batch_size = shape[0] |
|
if x_T is None: |
|
img = torch.randn(shape, device=self.device) |
|
else: |
|
img = x_T |
|
intermediates = [] |
|
if cond is not None: |
|
if isinstance(cond, dict): |
|
cond = { |
|
key: cond[key][:batch_size] |
|
if not isinstance(cond[key], list) |
|
else list(map(lambda x: x[:batch_size], cond[key])) |
|
for key in cond |
|
} |
|
else: |
|
cond = ( |
|
[c[:batch_size] for c in cond] |
|
if isinstance(cond, list) |
|
else cond[:batch_size] |
|
) |
|
|
|
if start_T is not None: |
|
timesteps = min(timesteps, start_T) |
|
iterator = ( |
|
tqdm( |
|
reversed(range(0, timesteps)), |
|
desc="Progressive Generation", |
|
total=timesteps, |
|
) |
|
if verbose |
|
else reversed(range(0, timesteps)) |
|
) |
|
if type(temperature) == float: |
|
temperature = [temperature] * timesteps |
|
|
|
for i in iterator: |
|
ts = torch.full((b,), i, device=self.device, dtype=torch.long) |
|
if self.shorten_cond_schedule: |
|
assert self.model.conditioning_key != "hybrid" |
|
tc = self.cond_ids[ts].to(cond.device) |
|
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) |
|
|
|
img, x0_partial = self.p_sample( |
|
img, |
|
cond, |
|
ts, |
|
clip_denoised=self.clip_denoised, |
|
quantize_denoised=quantize_denoised, |
|
return_x0=True, |
|
temperature=temperature[i], |
|
noise_dropout=noise_dropout, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, |
|
) |
|
if mask is not None: |
|
assert x0 is not None |
|
img_orig = self.q_sample(x0, ts) |
|
img = img_orig * mask + (1.0 - mask) * img |
|
|
|
if i % log_every_t == 0 or i == timesteps - 1: |
|
intermediates.append(x0_partial) |
|
if callback: |
|
callback(i) |
|
if img_callback: |
|
img_callback(img, i) |
|
return img, intermediates |
|
|
|
@torch.no_grad() |
|
def p_sample_loop( |
|
self, |
|
cond, |
|
shape, |
|
return_intermediates=False, |
|
x_T=None, |
|
verbose=True, |
|
callback=None, |
|
timesteps=None, |
|
quantize_denoised=False, |
|
mask=None, |
|
x0=None, |
|
img_callback=None, |
|
start_T=None, |
|
log_every_t=None, |
|
): |
|
if not log_every_t: |
|
log_every_t = self.log_every_t |
|
device = self.betas.device |
|
b = shape[0] |
|
if x_T is None: |
|
img = torch.randn(shape, device=device) |
|
else: |
|
img = x_T |
|
|
|
intermediates = [img] |
|
if timesteps is None: |
|
timesteps = self.num_timesteps |
|
|
|
if start_T is not None: |
|
timesteps = min(timesteps, start_T) |
|
iterator = ( |
|
tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps) |
|
if verbose |
|
else reversed(range(0, timesteps)) |
|
) |
|
|
|
if mask is not None: |
|
assert x0 is not None |
|
assert x0.shape[2:3] == mask.shape[2:3] |
|
|
|
for i in iterator: |
|
ts = torch.full((b,), i, device=device, dtype=torch.long) |
|
|
|
if self.shorten_cond_schedule: |
|
assert self.model.conditioning_key != "hybrid" |
|
tc = self.cond_ids[ts].to(cond.device) |
|
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) |
|
|
|
img = self.p_sample( |
|
img, |
|
cond, |
|
ts, |
|
clip_denoised=self.clip_denoised, |
|
quantize_denoised=quantize_denoised, |
|
) |
|
|
|
if mask is not None: |
|
img_orig = self.q_sample(x0, ts) |
|
img = img_orig * mask + (1.0 - mask) * img |
|
|
|
if i % log_every_t == 0 or i == timesteps - 1: |
|
intermediates.append(img) |
|
if callback: |
|
callback(i) |
|
if img_callback: |
|
img_callback(img, i) |
|
|
|
if return_intermediates: |
|
return img, intermediates |
|
return img |
|
|
|
@torch.no_grad() |
|
def sample( |
|
self, |
|
cond, |
|
batch_size=16, |
|
return_intermediates=False, |
|
x_T=None, |
|
verbose=True, |
|
timesteps=None, |
|
quantize_denoised=False, |
|
mask=None, |
|
x0=None, |
|
shape=None, |
|
**kwargs, |
|
): |
|
if shape is None: |
|
shape = (batch_size, self.channels, self.latent_t_size, self.latent_f_size) |
|
if cond is not None: |
|
if isinstance(cond, dict): |
|
cond = { |
|
key: cond[key][:batch_size] |
|
if not isinstance(cond[key], list) |
|
else list(map(lambda x: x[:batch_size], cond[key])) |
|
for key in cond |
|
} |
|
else: |
|
cond = ( |
|
[c[:batch_size] for c in cond] |
|
if isinstance(cond, list) |
|
else cond[:batch_size] |
|
) |
|
return self.p_sample_loop( |
|
cond, |
|
shape, |
|
return_intermediates=return_intermediates, |
|
x_T=x_T, |
|
verbose=verbose, |
|
timesteps=timesteps, |
|
quantize_denoised=quantize_denoised, |
|
mask=mask, |
|
x0=x0, |
|
**kwargs, |
|
) |
|
|
|
def save_waveform(self, waveform, savepath, name="outwav"): |
|
for i in range(waveform.shape[0]): |
|
if type(name) is str: |
|
path = os.path.join( |
|
savepath, "%s_%s_%s.wav" % (self.global_step, i, name) |
|
) |
|
elif type(name) is list: |
|
path = os.path.join( |
|
savepath, |
|
"%s.wav" |
|
% ( |
|
os.path.basename(name[i]) |
|
if (not ".wav" in name[i]) |
|
else os.path.basename(name[i]).split(".")[0] |
|
), |
|
) |
|
else: |
|
raise NotImplementedError |
|
todo_waveform = waveform[i, 0] |
|
todo_waveform = ( |
|
todo_waveform / np.max(np.abs(todo_waveform)) |
|
) * 0.8 |
|
sf.write(path, todo_waveform, samplerate=self.sampling_rate) |
|
|
|
@torch.no_grad() |
|
def sample_log( |
|
self, |
|
cond, |
|
batch_size, |
|
ddim, |
|
ddim_steps, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
use_plms=False, |
|
mask=None, |
|
**kwargs, |
|
): |
|
if mask is not None: |
|
shape = (self.channels, mask.size()[-2], mask.size()[-1]) |
|
else: |
|
shape = (self.channels, self.latent_t_size, self.latent_f_size) |
|
|
|
intermediate = None |
|
if ddim and not use_plms: |
|
ddim_sampler = DDIMSampler(self, device=self.device) |
|
samples, intermediates = ddim_sampler.sample( |
|
ddim_steps, |
|
batch_size, |
|
shape, |
|
cond, |
|
verbose=False, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
mask=mask, |
|
**kwargs, |
|
) |
|
elif use_plms: |
|
plms_sampler = PLMSSampler(self) |
|
samples, intermediates = plms_sampler.sample( |
|
ddim_steps, |
|
batch_size, |
|
shape, |
|
cond, |
|
verbose=False, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
mask=mask, |
|
unconditional_conditioning=unconditional_conditioning, |
|
**kwargs, |
|
) |
|
|
|
else: |
|
samples, intermediates = self.sample( |
|
cond=cond, |
|
batch_size=batch_size, |
|
return_intermediates=True, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
mask=mask, |
|
unconditional_conditioning=unconditional_conditioning, |
|
**kwargs, |
|
) |
|
|
|
return samples, intermediate |
|
|
|
@torch.no_grad() |
|
def generate_batch( |
|
self, |
|
batch, |
|
ddim_steps=200, |
|
ddim_eta=1.0, |
|
x_T=None, |
|
n_gen=1, |
|
unconditional_guidance_scale=1.0, |
|
unconditional_conditioning=None, |
|
use_plms=False, |
|
**kwargs, |
|
): |
|
|
|
|
|
assert x_T is None |
|
|
|
if use_plms: |
|
assert ddim_steps is not None |
|
|
|
use_ddim = ddim_steps is not None |
|
|
|
|
|
for i in range(1): |
|
z, c = self.get_input( |
|
batch, |
|
self.first_stage_key, |
|
unconditional_prob_cfg=0.0, |
|
) |
|
self.latent_t_size = z.size(-2) |
|
|
|
c = self.filter_useful_cond_dict(c) |
|
|
|
|
|
batch_size = z.shape[0] * n_gen |
|
|
|
|
|
|
|
for cond_key in c.keys(): |
|
if isinstance(c[cond_key], list): |
|
for i in range(len(c[cond_key])): |
|
c[cond_key][i] = torch.cat([c[cond_key][i]] * n_gen, dim=0) |
|
elif isinstance(c[cond_key], dict): |
|
for k in c[cond_key].keys(): |
|
c[cond_key][k] = torch.cat([c[cond_key][k]] * n_gen, dim=0) |
|
else: |
|
c[cond_key] = torch.cat([c[cond_key]] * n_gen, dim=0) |
|
|
|
if unconditional_guidance_scale != 1.0: |
|
unconditional_conditioning = {} |
|
for key in self.cond_stage_model_metadata: |
|
model_idx = self.cond_stage_model_metadata[key]["model_idx"] |
|
unconditional_conditioning[key] = self.cond_stage_models[ |
|
model_idx |
|
].get_unconditional_condition(batch_size) |
|
|
|
samples, _ = self.sample_log( |
|
cond=c, |
|
batch_size=batch_size, |
|
x_T=x_T, |
|
ddim=use_ddim, |
|
ddim_steps=ddim_steps, |
|
eta=ddim_eta, |
|
unconditional_guidance_scale=unconditional_guidance_scale, |
|
unconditional_conditioning=unconditional_conditioning, |
|
use_plms=use_plms, |
|
) |
|
|
|
mel = self.decode_first_stage(samples) |
|
|
|
mel = self.mel_replace_ops(mel, super().get_input(batch, "lowpass_mel")) |
|
|
|
waveform = self.mel_spectrogram_to_waveform( |
|
mel, savepath="", bs=None, save=False |
|
) |
|
|
|
waveform_lowpass = super().get_input(batch, "waveform_lowpass") |
|
waveform = self.postprocessing(waveform, waveform_lowpass) |
|
|
|
max_amp = np.max(np.abs(waveform), axis=-1) |
|
waveform = 0.5 * waveform / max_amp[..., None] |
|
mean_amp = np.mean(waveform, axis=-1)[..., None] |
|
waveform = waveform - mean_amp |
|
|
|
return waveform |
|
|
|
def _locate_cutoff_freq(self, stft, percentile=0.985): |
|
def _find_cutoff(x, percentile=0.95): |
|
percentile = x[-1] * percentile |
|
for i in range(1, x.shape[0]): |
|
if x[-i] < percentile: |
|
return x.shape[0] - i |
|
return 0 |
|
|
|
magnitude = torch.abs(stft) |
|
energy = torch.cumsum(torch.sum(magnitude, dim=0), dim=0) |
|
return _find_cutoff(energy, percentile) |
|
|
|
def mel_replace_ops(self, samples, input): |
|
for i in range(samples.size(0)): |
|
cutoff_melbin = self._locate_cutoff_freq(torch.exp(input[i])) |
|
|
|
|
|
|
|
|
|
samples[i][..., :cutoff_melbin] = input[i][..., :cutoff_melbin] |
|
return samples |
|
|
|
def postprocessing(self, out_batch, x_batch): |
|
|
|
for i in range(out_batch.shape[0]): |
|
out = out_batch[i, 0] |
|
x = x_batch[i, 0].cpu().numpy() |
|
cutoffratio = self._get_cutoff_index_np(x) |
|
|
|
length = out.shape[0] |
|
stft_gt = librosa.stft(x) |
|
|
|
stft_out = librosa.stft(out) |
|
energy_ratio = np.mean( |
|
np.sum(np.abs(stft_gt[cutoffratio])) |
|
/ np.sum(np.abs(stft_out[cutoffratio, ...])) |
|
) |
|
energy_ratio = min(max(energy_ratio, 0.8), 1.2) |
|
stft_out[:cutoffratio, ...] = stft_gt[:cutoffratio, ...] / energy_ratio |
|
|
|
out_renewed = librosa.istft(stft_out, length=length) |
|
out_batch[i] = out_renewed |
|
return out_batch |
|
|
|
def _find_cutoff_np(self, x, threshold=0.95): |
|
threshold = x[-1] * threshold |
|
for i in range(1, x.shape[0]): |
|
if x[-i] < threshold: |
|
return x.shape[0] - i |
|
return 0 |
|
|
|
def _get_cutoff_index_np(self, x): |
|
stft_x = np.abs(librosa.stft(x)) |
|
energy = np.cumsum(np.sum(stft_x, axis=-1)) |
|
return self._find_cutoff_np(energy, 0.985) |
|
|
|
|
|
class DiffusionWrapper(nn.Module): |
|
def __init__(self, diff_model_config, conditioning_key): |
|
super().__init__() |
|
self.diffusion_model = instantiate_from_config(diff_model_config) |
|
self.scale_factor = ( |
|
None |
|
) |
|
self.conditioning_key = conditioning_key |
|
|
|
for key in self.conditioning_key: |
|
if ( |
|
"concat" in key |
|
or "crossattn" in key |
|
or "hybrid" in key |
|
or "film" in key |
|
or "noncond" in key |
|
or "ignore" in key |
|
): |
|
continue |
|
else: |
|
raise Value("The conditioning key %s is illegal" % key) |
|
|
|
self.being_verbosed_once = False |
|
|
|
def forward(self, x, t, cond_dict: dict = {}): |
|
x = x.contiguous() |
|
t = t.contiguous() |
|
|
|
|
|
xc = x |
|
|
|
y = None |
|
context_list, attn_mask_list = [], [] |
|
|
|
conditional_keys = cond_dict.keys() |
|
|
|
for key in conditional_keys: |
|
if "ignore" in key: |
|
continue |
|
elif "concat" in key: |
|
cond = cond_dict[key] |
|
cond = cond * self.scale_factor |
|
xc = torch.cat([x, cond], dim=1) |
|
elif "film" in key: |
|
if y is None: |
|
y = cond_dict[key].squeeze(1) |
|
else: |
|
y = torch.cat([y, cond_dict[key].squeeze(1)], dim=-1) |
|
elif "crossattn" in key: |
|
|
|
if isinstance(cond_dict[key], dict): |
|
for k in cond_dict[key].keys(): |
|
if "crossattn" in k: |
|
context, attn_mask = cond_dict[key][ |
|
k |
|
] |
|
else: |
|
assert len(cond_dict[key]) == 2, ( |
|
"The context condition for %s you returned should have two element, one context one mask" |
|
% (key) |
|
) |
|
context, attn_mask = cond_dict[key] |
|
|
|
|
|
context_list.append(context) |
|
attn_mask_list.append(attn_mask) |
|
|
|
elif ( |
|
"noncond" in key |
|
): |
|
continue |
|
else: |
|
raise NotImplementedError() |
|
|
|
out = self.diffusion_model( |
|
xc, t, context_list=context_list, y=y, context_attn_mask_list=attn_mask_list |
|
) |
|
return out |
|
|
|
|
|
if __name__ == "__main__": |
|
import yaml |
|
|
|
model_config = "/mnt/fast/nobackup/users/hl01486/projects/general_audio_generation/stable-diffusion/models/ldm/text2img256/config.yaml" |
|
model_config = yaml.load(open(model_config, "r"), Loader=yaml.FullLoader) |
|
|
|
latent_diffusion = LatentDiffusion(**model_config["model"]["params"]) |
|
|
|
import ipdb |
|
|
|
ipdb.set_trace() |
|
|