Spaces:
Sleeping
Sleeping
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
LlamaTokenizer, | |
) | |
MAX_MAX_NEW_TOKENS = 1024 | |
DEFAULT_MAX_NEW_TOKENS = 50 | |
MAX_INPUT_TOKEN_LENGTH = 512 | |
DESCRIPTION = """\ | |
# OpenELM-270M-Instruct -- Running on CPU | |
This Space demonstrates [apple/OpenELM-270M-Instruct](https://huggingface.co/apple/OpenELM-270M-Instruct) by Apple. Please, check the original model card for details. | |
For additional detail on the model, including a link to the arXiv paper, refer to the [Hugging Face Paper page for OpenELM](https://huggingface.co/papers/2404.14619) . | |
For details on pre-training, instruction tuning, and parameter-efficient finetuning for the model refer to the [OpenELM page in the CoreNet GitHub repository](https://github.com/apple/corenet/tree/main/projects/openelm) . | |
""" | |
LICENSE = """ | |
<p/> | |
--- | |
As a derivative work of [apple/OpenELM-270M-Instruct](https://huggingface.co/apple/OpenELM-270M-Instruct) by Apple, | |
this demo is governed by the original [license](https://huggingface.co/apple/OpenELM-270M-Instruct/blob/main/LICENSE) | |
Based on the [Norod78/OpenELM_3B_Demo](https://huggingface.co/spaces/Norod78/OpenELM_3B_Demo) space. | |
""" | |
model = AutoModelForCausalLM.from_pretrained( | |
"apple/OpenELM-270M-Instruct", | |
trust_remote_code=True, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
# "NousResearch/Llama-2-7b-hf", | |
"meta-llama/Llama-2-7b-hf", | |
trust_remote_code=True, | |
tokenizer_class=LlamaTokenizer, | |
) | |
if tokenizer.pad_token == None: | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
model.config.pad_token_id = tokenizer.eos_token_id | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.1, | |
top_p: float = 0.5, | |
top_k: int = 3, | |
repetition_penalty: float = 1.4, | |
) -> Iterator[str]: | |
historical_text = "" | |
#Prepend the entire chat history to the message with new lines between each message | |
for user, assistant in chat_history: | |
historical_text += f"\n{user}\n{assistant}" | |
if len(historical_text) > 0: | |
message = historical_text + f"\n{message}" | |
input_ids = tokenizer([message], return_tensors="pt").input_ids | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
pad_token_id = tokenizer.eos_token_id, | |
repetition_penalty=repetition_penalty, | |
no_repeat_ngram_size=5, | |
early_stopping=False, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.0, | |
maximum=4.0, | |
step=0.1, | |
value=0.1, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.5, | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=3, | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.4, | |
), | |
], | |
stop_btn="Stop", | |
cache_examples=False, | |
examples=[ | |
["Explain quantum physics in 5 words or less:"], | |
["Question: What do you call a bear with no teeth?\nAnswer:"], | |
], | |
) | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
chat_interface.render() | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |