Update app.py
Browse files
app.py
CHANGED
@@ -2,36 +2,44 @@ import gradio as gr
|
|
2 |
from datasets import load_dataset
|
3 |
from PIL import Image, ImageDraw
|
4 |
import numpy as np
|
|
|
5 |
|
6 |
# Load the dataset
|
7 |
dataset = load_dataset("dwb2023/brain-tumor-image-dataset-semantic-segmentation", split="test")
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def draw_annotations(index):
|
11 |
try:
|
12 |
-
# Fetch the image and annotations from the dataset
|
13 |
record = dataset[index]
|
14 |
|
15 |
-
# Convert image to PIL Image if it's a numpy array
|
16 |
if isinstance(record['image'], np.ndarray):
|
17 |
img = Image.fromarray(record['image'])
|
18 |
else:
|
19 |
img = record['image']
|
20 |
|
21 |
-
img = img.convert("RGB")
|
22 |
-
|
23 |
draw = ImageDraw.Draw(img)
|
24 |
|
25 |
# Draw bounding box
|
26 |
bbox = record["bbox"]
|
27 |
draw.rectangle([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]], outline="red", width=2)
|
28 |
|
29 |
-
# Draw segmentation mask
|
30 |
segmentation = record["segmentation"]
|
31 |
for seg in segmentation:
|
32 |
draw.polygon(seg, outline="blue", width=2)
|
33 |
|
34 |
-
#
|
|
|
|
|
|
|
|
|
35 |
category_id = record["category_id"]
|
36 |
area = record["area"]
|
37 |
file_name = record["file_name"]
|
@@ -40,7 +48,8 @@ def draw_annotations(index):
|
|
40 |
info += f"Image ID: {record['id']}\n"
|
41 |
info += f"Category ID: {category_id}\n"
|
42 |
info += f"Bounding Box: [{bbox[0]:.2f}, {bbox[1]:.2f}, {bbox[2]:.2f}, {bbox[3]:.2f}]\n"
|
43 |
-
info += f"Segmentation: {segmentation}\n"
|
|
|
44 |
info += f"Area: {area:.2f}"
|
45 |
|
46 |
return img, info
|
@@ -52,6 +61,7 @@ def draw_annotations(index):
|
|
52 |
with gr.Blocks() as demo:
|
53 |
gr.Markdown("# Brain Tumor Image Dataset Viewer")
|
54 |
gr.Markdown("## Refer to the [dwb2023/brain-tumor-image-dataset-semantic-segmentation](https://huggingface.co/datasets/dwb2023/brain-tumor-image-dataset-semantic-segmentation/viewer/default/test) dataset for more information")
|
|
|
55 |
|
56 |
with gr.Row():
|
57 |
with gr.Column(scale=1):
|
|
|
2 |
from datasets import load_dataset
|
3 |
from PIL import Image, ImageDraw
|
4 |
import numpy as np
|
5 |
+
from rdp import rdp
|
6 |
|
7 |
# Load the dataset
|
8 |
dataset = load_dataset("dwb2023/brain-tumor-image-dataset-semantic-segmentation", split="test")
|
9 |
+
|
10 |
+
def simplify_segmentation(segmentation, max_points=20):
|
11 |
+
simplified = rdp(np.array(segmentation), epsilon=1.0)
|
12 |
+
while len(simplified) > max_points:
|
13 |
+
epsilon *= 1.5
|
14 |
+
simplified = rdp(np.array(segmentation), epsilon=epsilon)
|
15 |
+
return simplified.tolist()
|
16 |
|
17 |
def draw_annotations(index):
|
18 |
try:
|
|
|
19 |
record = dataset[index]
|
20 |
|
|
|
21 |
if isinstance(record['image'], np.ndarray):
|
22 |
img = Image.fromarray(record['image'])
|
23 |
else:
|
24 |
img = record['image']
|
25 |
|
26 |
+
img = img.convert("RGB")
|
|
|
27 |
draw = ImageDraw.Draw(img)
|
28 |
|
29 |
# Draw bounding box
|
30 |
bbox = record["bbox"]
|
31 |
draw.rectangle([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]], outline="red", width=2)
|
32 |
|
33 |
+
# Draw original segmentation mask
|
34 |
segmentation = record["segmentation"]
|
35 |
for seg in segmentation:
|
36 |
draw.polygon(seg, outline="blue", width=2)
|
37 |
|
38 |
+
# Simplify and draw simplified segmentation mask
|
39 |
+
simplified_segmentation = [simplify_segmentation(seg) for seg in segmentation]
|
40 |
+
for seg in simplified_segmentation:
|
41 |
+
draw.polygon(seg, outline="green", width=2)
|
42 |
+
|
43 |
category_id = record["category_id"]
|
44 |
area = record["area"]
|
45 |
file_name = record["file_name"]
|
|
|
48 |
info += f"Image ID: {record['id']}\n"
|
49 |
info += f"Category ID: {category_id}\n"
|
50 |
info += f"Bounding Box: [{bbox[0]:.2f}, {bbox[1]:.2f}, {bbox[2]:.2f}, {bbox[3]:.2f}]\n"
|
51 |
+
info += f"Original Segmentation Points: {sum(len(seg) for seg in segmentation)}\n"
|
52 |
+
info += f"Simplified Segmentation Points: {sum(len(seg) for seg in simplified_segmentation)}\n"
|
53 |
info += f"Area: {area:.2f}"
|
54 |
|
55 |
return img, info
|
|
|
61 |
with gr.Blocks() as demo:
|
62 |
gr.Markdown("# Brain Tumor Image Dataset Viewer")
|
63 |
gr.Markdown("## Refer to the [dwb2023/brain-tumor-image-dataset-semantic-segmentation](https://huggingface.co/datasets/dwb2023/brain-tumor-image-dataset-semantic-segmentation/viewer/default/test) dataset for more information")
|
64 |
+
gr.Markdown("### Blue: Original Segmentation, Green: Simplified Segmentation (max 20 points)")
|
65 |
|
66 |
with gr.Row():
|
67 |
with gr.Column(scale=1):
|