Spaces:
Sleeping
Sleeping
import os | |
import json | |
import time | |
from datetime import datetime | |
from pathlib import Path | |
from uuid import uuid4 | |
import tempfile | |
import gradio as gr | |
import yt_dlp as youtube_dl | |
from huggingface_hub import CommitScheduler | |
from transformers import ( | |
BitsAndBytesConfig, | |
AutoModelForSpeechSeq2Seq, | |
AutoTokenizer, | |
AutoFeatureExtractor, | |
pipeline, | |
) | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
# import torch # If you're using PyTorch | |
import spaces | |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
MODEL_NAME = "openai/whisper-large-v3" | |
BATCH_SIZE = 8 | |
YT_LENGTH_LIMIT_S = 4800 # 1 hour 20 minutes | |
# Quantization | |
bnb_config = BitsAndBytesConfig(load_in_4bit=True) | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
MODEL_NAME, | |
quantization_config=bnb_config, | |
device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME) | |
# bnb_config = bnb.QuantizationConfig(bits=4) | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=model, | |
tokenizer=tokenizer, | |
feature_extractor=feature_extractor, | |
chunk_length_s=30, | |
# device=device, | |
) | |
# Define paths and create directory if not exists | |
JSON_DATASET_DIR = Path("json_dataset") | |
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True) | |
JSON_DATASET_PATH = JSON_DATASET_DIR / f"transcriptions-{uuid4()}.json" | |
# Initialize CommitScheduler for saving data to Hugging Face Dataset | |
scheduler = CommitScheduler( | |
repo_id="transcript-dataset-repo", | |
repo_type="dataset", | |
folder_path=JSON_DATASET_DIR, | |
path_in_repo="data", | |
) | |
def download_yt_audio(yt_url, filename): | |
info_loader = youtube_dl.YoutubeDL() | |
try: | |
info = info_loader.extract_info(yt_url, download=False) | |
except youtube_dl.utils.DownloadError as err: | |
raise gr.Error(str(err)) | |
file_length = info["duration"] | |
if file_length > YT_LENGTH_LIMIT_S: | |
yt_length_limit_hms = time.strftime("%H:%M:%S", time.gmtime(YT_LENGTH_LIMIT_S)) | |
file_length_hms = time.strftime("%H:%M:%S", time.gmtime(file_length)) | |
raise gr.Error( | |
f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video." | |
) | |
ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
ydl.download([yt_url]) | |
def yt_transcribe(yt_url, task): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
download_yt_audio(yt_url, filepath) | |
with open(filepath, "rb") as f: | |
inputs = f.read() | |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
text = pipe( | |
inputs, | |
batch_size=BATCH_SIZE, | |
generate_kwargs={"task": task}, | |
return_timestamps=True, | |
)["text"] | |
save_transcription(yt_url, text) | |
return text | |
def save_transcription(yt_url, transcription): | |
with scheduler.lock: | |
with JSON_DATASET_PATH.open("a") as f: | |
json.dump( | |
{ | |
"url": yt_url, | |
"transcription": transcription, | |
"datetime": datetime.now().isoformat(), | |
}, | |
f, | |
) | |
f.write("\n") | |
demo = gr.Blocks() | |
yt_transcribe_interface = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.Textbox( | |
lines=1, | |
placeholder="Paste the URL to a YouTube video here", | |
label="YouTube URL", | |
), | |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
], | |
outputs="text", | |
title="Whisper Large V3: Transcribe YouTube", | |
description=( | |
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint" | |
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of" | |
" arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface( | |
[yt_transcribe_interface], ["YouTube"] | |
) | |
demo.queue().launch() | |